Phosphodiesterase Inhibitors: History of Pharmacology

  • Christian Schudt
  • Armin Hatzelmann
  • Rolf Beume
  • Hermann Tenor
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 204)


The first pharmacological investigations of phosphodiesterase (PDE) inhibitors were developed with the clinical efficacies of drugs isolated from coffee, cacao and tea but only later their relevant ingredients were identified as xanthines that act as PDE. With its diuretic, inotropic and bronchodilating clinical efficacy, use of theophylline anticipated the clinical goals, which were later approached with the first-generation of weakly selective PDE inhibitors in the period from 1980 to 1990. Pharmacological and clinical research with these early compounds provided a vast pool of information regarding desired and adverse actions – although most of these new drugs had to be discontinued due to severe adverse effects. The pharmacological models for cardiac, vascular and respiratory indications were analysed for their PDE isoenzyme profiles, and when biochemical and molecular biological approaches expanded our knowledge of the PDE superfamily, the purified isoenzymes that were now available opened the door for more systematic studies of inhibitors and for generation of highly selective isoenzyme-specific drugs. The development of simple screening models and clinically relevant indication models reflecting the growing knowledge about pathomechanisms of disease are summarised here for today’s successful application of highly selective PDE3, PDE4 and PDE5 inhibitors. The interplay of serendipitous discoveries, the establishment of intelligent pharmacological models and the knowledge gain by research results with new substances is reviewed. The broad efficacies of new substances in vitro, the enormous biodiversity of the PDE isoenzyme family and the sophisticated biochemical pharmacology enabled Viagra to be the first success story in the field of PDE inhibitor drug development, but probably more success stories will follow.


Asthma COPD PDE inhibitors PDE4 inhibitors 


  1. Allard E (1904) Über Theocinvergiftung. Arch Klin Med 80:510–519Google Scholar
  2. Alousi AA, Farah AE, Lesher GY, Opalka CJ (1979) Cardiotonic activity of amrinone-Win 40680 [5-amino-3, 4’-bipyridine-6(1H)-one]. Circ Res 45:666–677PubMedGoogle Scholar
  3. American Thoracic Society (1962) Definitions and classifications of chronic bronchitis, asthma and pulmonary emphysema. Am Rev Respir Dis 85:762–768Google Scholar
  4. Andersson P (1980) Antigen-induced brochial anaphylaxis in actively sensitized guinea pigs. Allergy 35:65–71PubMedCrossRefGoogle Scholar
  5. Au BT, Teixeira MM, Collins PD, Williams TJ (1998) Effect of PDE4 inhibitors on zymosan-induced IL-8 release from human neutrophils: synergism with prostanoids and salbutamol. Br J Pharmacol 123:1260–1266PubMedCrossRefGoogle Scholar
  6. Barnes PJ (1998) New therapies for chronic obstructive pulmonary disease. Thorax 53:137–147PubMedCrossRefGoogle Scholar
  7. Barnes PJ (2003a) Theophylline, new perspectives of an old drug. Am J Respir Crit Care Med 167:813–818PubMedCrossRefGoogle Scholar
  8. Barnes PJ (2003b) New concepts in chronic obstructive pulmonary disease. Annu Rev Med 54:113–129PubMedCrossRefGoogle Scholar
  9. Barnes PJ, Celli B (2008) Systemic manifestations and comorbidities of COPD. Eur Respir J 33:1665–1685Google Scholar
  10. Barnes PJ, Rennard SI (2008) Pathophysiology of COPD. In: Barnes PJ, Drazen J, Rennard SI, Thomson N (eds) Asthma and COPD. Basic mechanisms and clinical management. Academic, Amsterdam, pp 425–442Google Scholar
  11. Barnes AP, Livera G, Huang P, Sun C, O’Neal WK, Conti M, Stutts MJ, Milgram SL (2005) Phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium. J Biol Chem 280:7997–8003PubMedCrossRefGoogle Scholar
  12. Barnette MS, Grous M, Cieslinski LB, Burman M, Christensen SB, Torphy TJ (1995a) Inhibitors of phosphodiesterase IV (PDEIV) increase acid secretion in rabbit isolated gastric glands: Correlation between function and interaction with a high-affinity rolipram binding site. J Pharmacol Exp Ther 273:1396–1402PubMedGoogle Scholar
  13. Barnette MS, Manning CD, Cieslinski LB, Burman M, Christensen SB, Torphy TJ (1995b) The ability of phosphodiesterase IV inhibitors to suppress superoxide production in guinea pig eosinophils is correlated with inhibition of phosphodiesterase IV catalytic activity. J Pharmacol Exp Ther 273:674–679PubMedGoogle Scholar
  14. Barnette MS, Bartus JO, Burman M, Christensen SB, Cieslinski LB, Esser KM, Prabhakar US, Rush JA, Torphy TJ (1996) Association of the anti-inflammatory activity of phosphodiesterase 4 (PDE4) inhibitors with either inhibition of PDE4 catalytic activity or competition for [3H]rolipram binding. Biochem Pharmacol 51:949–956PubMedCrossRefGoogle Scholar
  15. Barnette MS, Christensen SB, Essayan DM, Grous M, Prabhakar U, Rush JA, Kagey-Sobotka A, Torphy TS (1998) SB 207499 (Ariflo), a potent and selective second-generation phosphodiesterase 4 inhibitor: in vitro anti-inflammatory actions. J Pharmacol Exp Ther 284:420–426PubMedGoogle Scholar
  16. Beavo JA (1988) Multiple isozymes of cyclic nucleotide phosphodisterase. Adv Sec Messengers Phosphoprotein Res 22:1–38Google Scholar
  17. Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46:399–405PubMedGoogle Scholar
  18. Benotti JR, Grossman W, Braunwald E, Davolos DD, Alousi A (1978) Hemodynamic assessment of amrinone. N Engl J Med 299:1373–1377PubMedCrossRefGoogle Scholar
  19. Beume R, Kilian U, Brand U, Häfner D, Eltze M, Flockerzi D (1993) The bronchospasmolytic effects of the PDEIII/IV inhibitors B9004-70 and zardaverine – dependency on the route of administration in guinea pigs. Am Rev Respir Dis 174:A184Google Scholar
  20. Boero S, Silvestri M, Sabatini F, Nachira A, Rossi GA (2006) Inhibition of human lung fibroblast functions by roflumilast N-oxide. Eur J Respir (Suppl) 662s:P3845, abstractGoogle Scholar
  21. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8:47–52PubMedGoogle Scholar
  22. Brindley GS (1982) Intracavernous injection of papaverine for erectile failure. Lancet 2:938Google Scholar
  23. Brindley GS (1986) Pilot experiments on the actions of drugs injected into the human corpus cavernosum penis. Br J Pharmacol 87:495–500PubMedGoogle Scholar
  24. Bundschuh DS, Eltze M, Barsig J, Wollin L, Hatzelmann A, Beume R (2001) In vivo efficacy in airway disease models of roflumilast, a novel orally active PDE4 inhibitor. J Pharmacol Exp Ther 297:280–290PubMedGoogle Scholar
  25. Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, Bjornsson JM, Thorsteinsdottir M, Hrafnsdottir S, Hagen T, Kiselyov AS, Stewart LJ, Gurney ME (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70PubMedCrossRefGoogle Scholar
  26. Burkman AM (1982) Assessment of emetic and antiemetic activity. J Pharmacol Meth 8:165–171CrossRefGoogle Scholar
  27. Butcher RW (1984) Phosphodiesterase after 20 years: an Introduction. Adv Cycl Nucl Protein Phos Res 16:1–12Google Scholar
  28. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ, M2–124 and M2–125 study groups (2009) Roflumilast in symptomatic chronic obstructive pulmonary disease. Two randomized clinical trials. Lancet 374:685–94PubMedCrossRefGoogle Scholar
  29. Campbell SF (2000) Science, art and drug discovery: a personal perspective. Clin Sci 99:255–260PubMedCrossRefGoogle Scholar
  30. Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P (2006) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173:1139–44PubMedCrossRefGoogle Scholar
  31. Cervin A, Lindgren S (1998) The effect of selective phosphodiesterase inhibitors on mucociliary activity in the upper and lower airways in vitro. Auris Nasus Larynx 25:269–76PubMedCrossRefGoogle Scholar
  32. Chikanza IC, Jawed SJ, Blake DR, Perrot S, Menkes CI, Barnes CG, Perry JD, Wright MG (1996) Treatment of patients with rheumathoid arthritis with RP73401 phosphodiesterase type IV inhibitor. Arthritis Rheum 39:282Google Scholar
  33. Christensen SB, DeWolf WE, Ryan MD, Torphy TJ (1996) Molecular aspects of inhibitor interaction with PDE4. In: Schudt C, Dent G, Rabe KF (eds) Phosphodiesterase inhibitors. Acedemic, LondonGoogle Scholar
  34. Churg A, Cosio M, Wright JL (2008) Mechanism of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol 294:L612–L631CrossRefGoogle Scholar
  35. Cockroft DW (1983) Mechanism of perennial allergic asthma. Lancet 322:253–256CrossRefGoogle Scholar
  36. Cohen NA, Zhang S, Sharp DB, Tamashiro E, Chen B, Sorscher EJ, Woodworth BA (2009) Cigarette smoke condensate inhibits transepithelial chloride transport and ciliary beat frequency. Laryngoscope 119:2269–2274PubMedCrossRefGoogle Scholar
  37. Compton CH, Gubb J, Nieman R, Edelson J, Ohad A, Bakst A, Ayres JG, Creemers JP, Schultze-Werninghaus G, Brambilla C, Barnes NC (2001) Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. Lancet 358:265–270PubMedCrossRefGoogle Scholar
  38. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511PubMedCrossRefGoogle Scholar
  39. Cortijo J, Bou J, Cardelus I, Llenas J, Morcillo E, Gristwood RW (1993) Investigation into the role of phosphodiesterase IV in bronchorelaxation, including studies with human bronchus. Br J Pharmacol 108:562–568PubMedGoogle Scholar
  40. Cortijo J, Iranzo A, Milara X, Mata M, Cerdá-Nicolás M, Ruiz-Saurí A, Tenor H, Hatzelmann A, Morcillo EJ (2009) Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmacol 156:534–544PubMedCrossRefGoogle Scholar
  41. Coyle AJ, Urwin SJ, Page CP, Touvay C, Villain B, Braquet P (1988) The effect of selective PAF antagonist BN52021 on PAF- and antigen-induced bronchial hyper-reactivity and eosinophil accumulation. Eur J Pharmacol 148:51–58PubMedCrossRefGoogle Scholar
  42. Cushley MJ, Holgate ST (1985) Adenosine-induced bronchoconstriction in asthma: role of mast cell-mediator release. J Allergy Clin Immunol 75:272–278PubMedCrossRefGoogle Scholar
  43. Dent G, Rabe KF, Giembycz MA (1990) Inhibition of eosinophil respiratory burst activity by type IV- but not by type III-selective phosphodiesterase inhibitors. A Rev Respir Dis 141:A878Google Scholar
  44. Dent G, Giembycz MA, Rabe KF, Barnes PJ (1991) Inhibition of eosinophil cyclic nucleotide PDE activity and opsonised zymosan-stimulated respiratory burst by “type IV”-selective PDE inhibitors. Br J Pharmacol 103:1339–1346PubMedGoogle Scholar
  45. Dent G, White SR, Tenor H, Bodtke K, Schudt C, Leff AR, Magnussen H, Rabe KF (1998) Cyclic nucleotide phosphodiesterase in human bronchial epithelial cells: characterization of isoenzymes and functional effects of PDE inhibitors. Pulm Pharmacol Ther 11:47–56PubMedCrossRefGoogle Scholar
  46. Diebold I, Djordjevic T, Petry A, Hatzelmann A, Tenor H, Hess J, Görlach A (2009) Phosphodiesterase 2 mediates redox-sensitive endothelial cell proliferation and angiogenesis by thrombin via Rac1 and NADPH oxidase 2. Circ Res 104:1169–77PubMedCrossRefGoogle Scholar
  47. Dunkern T, Hatzelmann A (2005) The effect of sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal 17:331–339PubMedCrossRefGoogle Scholar
  48. Dunkern TR, Feurstein D, Rossi GA, Sabatini F, Hatzelmann A (2007) Inhibition of TGF-ß induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur J Pharmacol 572:12–22PubMedCrossRefGoogle Scholar
  49. Engelstaetter R, Wingertzahn M, Schmid-Wirlitsch C, Bredenbröker D, Leichtl S, Wurst W (2005) Roflumilast, an investigational, oral, once daily phosphodiesterase 4 inhibitor, did not exhibit acute bronchodilatory activity after a single dose. Ann Allergy Asthma Immunol 94:169Google Scholar
  50. England PJ, Shahid M (1987) Effects of forskolin on contractile responses and protein phosphorylation in the isolated perfused heart. Br J Pharmacol 264:687–695Google Scholar
  51. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, Bundschuh DS, Brose M, Martinez FJ, Rabe KF (2009) M2-127 and M2-128 study groups. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with long acting bronchodilators: two randomised clinical trials. Lancet 374:695–703PubMedCrossRefGoogle Scholar
  52. Farah AE, Alousi AA (1978) New cardiotonic agents: a search for digitalis substitute. Life sci 22:1139–1148PubMedCrossRefGoogle Scholar
  53. Filley GF (1967) Emphysema and chronic bronchitis: clinical manifestations and their physiologic significance. Med Clin North Am 51:283–292PubMedGoogle Scholar
  54. Fischer E, Ach L (1895) Synthese des Caffeins. Berichte der deutschen Gesellschaft 28:3135CrossRefGoogle Scholar
  55. Fischer W, Schudt C, Wendel A (1993) Protection by phosphodiesterase inhibitors against endotoxin-induced liver injury in galactosamine-sensitized mice. Biochem Pharmacol 12:2399–2404CrossRefGoogle Scholar
  56. Fitzgerald MF, Spicer D, Henning R (2003) Efficacy of the PDE4 inhibitor Bay 19-8004 and a steroid in tobacco smoke-induced models of pulmonary inflammation in the mouse. Am J Respir Crit Care Med 167:A91CrossRefGoogle Scholar
  57. Fitzgerald MF, Spicer D, McAulay AE, Wollin L, Beume R (2006) Roflumilast but not methylprednisolone inhibited cigarette smoke-induced pulmonary inflammation in guinea pigs. Eur Respir J Suppl 663s:P3850, abstractGoogle Scholar
  58. Foster RW, Rakshi K, Carpenter JR, Small RC (1992) Trials of the bronchodilator activity of the isoenzyme-selective phosphodiesterase inhibitor AH 21-132 in healthy volonteers during methacholine challenge test. Br J Clin Pharmacol 34:527–534PubMedGoogle Scholar
  59. Francis SH, Lincoln TM, Corbin JD (1980) Characterization of a novel cGMP binding protein from rat lung. J Biol Chem 255:620–626PubMedGoogle Scholar
  60. Frossard N, Landry Y, Pauli G, Ruckstuhl M (1981) Effects of cyclic AMP- and cyclic GMP-phosphodiesterase inhibitors on immunological release of histamine and lung contraction. Br J Pharmacol 73:933–938PubMedGoogle Scholar
  61. Fuhrmann M, Jahn HU, Seybold J, Neurohr C, Barnes PJ, Hippenstiel S, Kraemer HJ, Suttorp N (1999) Identification and function of cyclic nucleotide phosphodiesterase isoenzymes in airway epithelial cells. Am J Respir Cell Mol Biol 20:292–302PubMedGoogle Scholar
  62. Gantner F, Kupferschmidt R, Schudt C, Wendel A, Hatzelmann A (1997a) In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors. Br J Pharmacol 121:221–231PubMedCrossRefGoogle Scholar
  63. Gantner F, Tenor H, Gekeler V, Schudt C, Wendel A, Hatzelmann A (1997b) Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study. J Allergy Clin Immunol 100:527–537PubMedCrossRefGoogle Scholar
  64. Gantner F, Schudt C, Wendel A, Hatzelmann A (1999) Characterization of the phosphodiesterase (PDE) pattern of in vitro-generated human dendritic cells (DC) and the influence of PDE inhibitors on DC functions. Pulm Pharmacol Ther 12:377–386PubMedCrossRefGoogle Scholar
  65. Ghofrani HA, Wiedemann R, Rose F, Olschewki H, Schermuly RT, Weissmann N, Seeger W, Grimminger F (2002a) Combination therapy with oral sildenafil and inhaled ileprost for severe pulmonary hypertension. Ann Intern Med 136:515–522PubMedGoogle Scholar
  66. Ghofrani HA, Rose F, Schermuly RT, Olschewski H, Wiedemann R, Weissmann N, Schudt C, Tenor H, Seeger W, Grimminger F (2002b) Amplification of the pulmonary vasodilatory response to inhaled iloprost by subthreshold phosphodiesterase types 3 and 4 inhibition in severe pulmonary hypertension. Crit Care Med 30:2489–2492PubMedCrossRefGoogle Scholar
  67. Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Rev 5:689–702CrossRefGoogle Scholar
  68. Giembycz MA, Field KF (2010) Roflumilast: first phosphodiesterase 4 inhibitor approved for treatment of COPD. Drug Des Dev Ther 4:147–158Google Scholar
  69. Giembycz MA, Corrigan CJ, Seybold J, Newton R, Barnes PF (1996) Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T- lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br J Pharmacol 118:1945–1958PubMedGoogle Scholar
  70. Goldie RG, Papadimitriou JM, Paterson JW, Rigby PJ, Self HM, Spina D (1986) Influence of the epithelium on responsiveness of guinea-pig isolated trachea to contractile and relaxant agonists. Br J Pharmacol 87:5–14PubMedGoogle Scholar
  71. Greene JA, Paul WD (1937) The action of theophylline with ethylenediamine on intrathecal and venous pressure in cardiac failure and on bronchial obstruction in cardiac failure an bronchial asthma. J Am Med Assoc 109:1712Google Scholar
  72. Grimminger F, Spriesterbach R, Weissmann N, Walmrath D, Seeger W (1995) Nitric oxide generation and hypoxic vasoconstriction in buffer-perfused rabbit lungs. J Appl Physiol 78:1509–1515PubMedGoogle Scholar
  73. Grootendorst DC, Gauw SA, Baan R, Kelly J, Murdoch RD, Sterk PJ, Rabe KF (2003) Does a single dose of the phosphodiesterase 4 inhibitor, cilomilast /15 mg), induce bronchodilation in patients with chronic obstructive pulmonary disease? Pulm Pharmacol Ther 16:115–129PubMedCrossRefGoogle Scholar
  74. Grueter R (1910) Über leicht lösliche Verbindungen des Theophyllins. Therapeutische Monatshefte 24:613Google Scholar
  75. Hamilton TC (1972) The effects of some phosphodiesterase inhibitors on the conductance of the perfused vascular beds of the chloralosed cat. Br J Pharmacol 46:386–394PubMedGoogle Scholar
  76. Hannon JP, Tigani B, Williams I, Mazzoni L, Fozard JR (2001) Mechanism of airway hyperresponsiveness to adenosine induced by allergen challenge in actively sensitized Brown Norway rats. Br J Pharmacol 132:1509–1523PubMedCrossRefGoogle Scholar
  77. Hargreave FE (1989) Late-phase asthmatic responses and airway inflammation. J Allergy Clin Immunol 83:525–527PubMedCrossRefGoogle Scholar
  78. Harris AL, Conell MJ, Ferguson EW, Wallace AM, Gordon RJ, Pagani ED, Silver PJ (1989) Role of low Km cyclic AMP phosphodiesterase inhibition in tracheal relaxation and bronchodilation in the guinea pig. J Pharmacol Exp Ther 251:199–206PubMedGoogle Scholar
  79. Hatzelmann A, Schudt C (2001) Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J Pharmacol Exp Ther 297:267–279PubMedGoogle Scholar
  80. Hatzelmann A, Tenor H, Schudt C (1995) Differential effects of non-selective and selective phosphodiesterase inhibitors on human eosinophil functions. Br J Pharmacol 114:821–831PubMedGoogle Scholar
  81. Hatzelmann A, Engelstätter R, Morley J, Mazzoni L (1996a) Enzymatic and functional aspects of dual-selective PDE3/4 inhibitors. In: Schudt C, Dent G, Rabe KF (eds) Phosphodiesterase inhibitors. Academic, LondonGoogle Scholar
  82. Hatzelmann A, Haefner D, Beume R, Schudt C (1996b) Automatic leukocyte differentiation in bronchoalveolar lavage fluid of guinea pigs ad Brown-Norway rats. J Pharmacol Toxicol Meth 35:91–99CrossRefGoogle Scholar
  83. Hatzelmann A, Morcillo E, Lungarella G, Adnot S, Sanjar S, Beume R, Schudt C, Tenor H (2010) The preclinical pharmacology of roflumilast – a selective, oral phosphodiesterase inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 23(4):235–256PubMedCrossRefGoogle Scholar
  84. Hedqvist P, Fredholm BB, Olundh S (1978) Antagonistic effects of theophylline and adenosine on adrenergic neuroeffector transmission in the rabbit kidney. Circ Res 43:592–598PubMedGoogle Scholar
  85. Hermann GR, Aynesworth MB, Martin J (1937) Successful treatment of persistent extreme dyspnea, “status asthmaticus” – use of theophylline ethylene diamine (aminophylline, U.S.P.) intravenously. J Lab Clin Med 23:135Google Scholar
  86. Hidaka H, Asano T (1976) Human platelet 3′:5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Acta 429:485–497PubMedGoogle Scholar
  87. Hirsch S (1922) Klinischer und experimenteller Beitrag zur krampflösenden Wirkung der Purinderivate. Klinische Wochenschrift 1:615–618Google Scholar
  88. Holden CA, Chan SC, Hanifin JM (1986) Monocyte localization of elevated cAMP phosphodiesterase activity in atopic dermatitis. J Invest Dermatol 87:372–376PubMedCrossRefGoogle Scholar
  89. Honerjäger P, Schäfer-Korting M, Reiter M (1981) Involvement of cyclic AMP in direct inotropic action of amrinone. Naunyn-Schmiedeberg’s Arch Pharmacol 318:112–120Google Scholar
  90. Horowski R, Sastre-Y-Hernandez M (1985) Clinical effects of the neurotropic selective cAMP phosphodiesterase inhibitor rolipram in depressed patients: global evaluation of the preliminary reports. Curr Ther Res 38:23–29Google Scholar
  91. Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J (1990) Nitric oxide and cyclic GMP formation upon a electric fields stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Comm 170:843–850PubMedCrossRefGoogle Scholar
  92. Izikki M, Raffestin B, Klar J, Hatzelmann J, Marx D, Tenor H, Zadigue P, Adnot S, Eddahibi S (2009) Effects of roflumilast, a phosphodiesterase-4 inhibitor, on hypoxia- and monocrotaline-induced pulmonary hypertension in rats. J Pharmacol Exp Ther 330:54–62PubMedCrossRefGoogle Scholar
  93. Jones NA, Boswell-Smith V, Lever R, Page CP (2005) The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther 18:93–101PubMedCrossRefGoogle Scholar
  94. Kaliner M, Orange R, Austen F (1972) Immunological release of histamine and slow reacting substance of anaphylaxis from human lung. J Exp Med 136:556–566PubMedCrossRefGoogle Scholar
  95. Kammer GM (1988) The adenylate cyclise-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today 9:222–229PubMedCrossRefGoogle Scholar
  96. Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cycl Nucl Res 3:23–35Google Scholar
  97. Kay AB (1987) Inflammatory cells in acute and chronic asthma. Am Rev Respir Dis 135:S63–66PubMedGoogle Scholar
  98. Kilian U, Beume EM, Schudt C (1989) Is phosphodiesterase inhibition a relevant bronchospasmolytic principle? Agents Actions (Suppl) 28:331–348Google Scholar
  99. Klar J, Sabatini F, Schatton E, Burgbacher B, Rossi GA, Hatzelmann A, Tenor H (2007) Roflumilast N-oxide reduces human fibroblast function. Eur Respir J (Suppl) 544s:3258, abstractGoogle Scholar
  100. Kleine-Tebbe J, Wicht L, Gagne H, Friese A, Schunack W, Schudt C, Kunkel G (1992) Inhibition of IgE.mediated histamine release from human peripheral leukocytes by selective phosphodiesterase inhibitors. Agents Actions 36:200–206PubMedGoogle Scholar
  101. Klotz L (2005) How (not) to communicate scientific information: a memoir of the famous Brindley lecture. Br J Urol 95:956–957Google Scholar
  102. Knispel HH, Goessl C, Beckmann R (1992) Nitric oxide mediate relaxation in rabbit and human corpus cavernosum smooth muscle. Urol Res 20:253–257PubMedCrossRefGoogle Scholar
  103. Kohyama T, Liu X, Wen FQ, Zhu YK, Wang H, Kim HJ, Takizawa H, Cieslinski LB, Barnette MS, Rennard SI (2002) PDE4 inhibitors attenuate fibroblast chemotaxis and contraction of native collagen gels. Am J Respir Cell Mol Biol 26:694–701PubMedGoogle Scholar
  104. Kreindler JL, Jackson AD, Kemp PA, Bridges RJ, Danahay H (2005) Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract. Am J Physiol Lung Cell Mol Physiol 288:L894–902PubMedCrossRefGoogle Scholar
  105. Kukovetz WR, Holzmann S, Wurm A, Pöch G (1979) Evidence for cGMP-mediated relaxant effects of nitro-compounds in coronary smooth muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 310:129–138CrossRefGoogle Scholar
  106. Kumar M, Bhattacharya V (2007) Cilostazol: a new drug in the treatment intermittent claudication. Recent Pat Cardiovasc Drug Discov 2:181–185PubMedCrossRefGoogle Scholar
  107. Kumar RK, Herbert C, Thomas PS, Wollin L, Beume R, Yang M, Webb DC, Foster PS (2003) Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. J Pharmacol Exp Ther 307:349–355PubMedCrossRefGoogle Scholar
  108. Lad PM, Goldberg BJ, Smiley PA, Olson CV (1985) Receptor-specific threshold effects of cyclic AMP are involved in the regulation of enzyme release and superoxide production from human neutrophils. Biochem Biophys Acta 846:286–295PubMedCrossRefGoogle Scholar
  109. Langendorff O (1895) Untersuchungen am überlebenden Säugethierherzen. Arch ges Physiol 61:291–332CrossRefGoogle Scholar
  110. Leclerc O, Lagente V, Planquois JM, Bethelier C, Artola M, Eichholtz T, Bertrand CP, Schmidlin F (2006) Involvement of MMP-12 and phosphodiesterase type 4 in cigarette smoke-induced inflammation in mice. Eur Respir J 27:1102–1109PubMedCrossRefGoogle Scholar
  111. Lee J-H, Lee D-S, Kim E-K, Oh Y-M, Shim T-S, Kim S-E, Lee Y-S, Lee S-D (2005) Simvastatin inhibits cigarette smoking-induced ephysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med 172:987–983PubMedCrossRefGoogle Scholar
  112. Leeman M, Lejeune P, Melot C, Naelje R (1987) Reduction in pulmonary hypertension and in airway resistances by enoximone (NDL 17, 043) in decompensated COPD. Chest 91:662PubMedCrossRefGoogle Scholar
  113. LeJemtel TH, Keung E, Sonnenblick EH, Ribner HS, Matsumoto M, Davis R, Schwartz W, Alousi AA, Davolos D (1979) Amrinone: a new non-glycosidic, non-adrenergic cardiotonic agent effective in the treatment of intractable myocardial failure in man. Circulation 59:1098–1104PubMedGoogle Scholar
  114. Liechtenstein ML, Margolis S (1968) Histamine release in vitro: inhibition by catecholamines and methylxanthines. Science 161:982–983CrossRefGoogle Scholar
  115. Lorenz KL, Wells JN (1982) Potentiation of the effects of sodium nitroprusside and of isoproterenol by selective phosphodiesterase inhibitors. Mol Pharmacol 23:424–430Google Scholar
  116. Lötvall J, Inman M, O’Byrne P (1998) Measurements of airway hyperresponsiveness: new considerations. Thorax 5:419–424CrossRefGoogle Scholar
  117. Macht DI, Ting GC (1921) A study of antispasmodic drugs in the bronchus. J Pharmacol Exp Ther 18:373–398Google Scholar
  118. MacPhee CH, Harrison SA, Beavo JA (1986) Immunological identification of the major platelet low-Km cAMP phosphodiesterase: probable target for anti-thrombotic agents. Proc Natl Acad Sci 83:6660–6663PubMedCrossRefGoogle Scholar
  119. Magnus R (1904) Versuche am überlebenden Dünndarm von Säugethieren. Pflüger’s Arch 102:123–151CrossRefGoogle Scholar
  120. Marone G, Columbo M, Triggiani M, Cirillo R, Genovese A, Formisano S (1987) Inhibition of IgE- mediated release of histamine and peptide leukotriene from human basophils and mast cells by forskolin. Biochem Pharmacol 36:13–20PubMedCrossRefGoogle Scholar
  121. Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G (2005) Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 172:848–853PubMedCrossRefGoogle Scholar
  122. Martorana PA, Lunghi B, Lucattelli M, de Cunto G, Beume R, Lungarella G (2008) Effect of roflumilast on inflammatory cells in lungs of cigarette smoke-exposed mice. BMC Pulm Med 8:17–26PubMedCrossRefGoogle Scholar
  123. Mata M, Sarriá B, Buenestado A, Cortijo J, Cerdá M, Morcillo EJ (2005) Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax 60:144–52PubMedCrossRefGoogle Scholar
  124. Maurice DH, Haslam RJ (1990) Molecular basis of synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37:671–681PubMedGoogle Scholar
  125. May CD (1974) History of the introduction of theophylline into the treatment of asthma. Clin Allergy 4:211–217PubMedCrossRefGoogle Scholar
  126. Milara J, Cortijo J, Armengot M, Banuls P, Gabarda E, Morcillo E (2008a) Effect of roflumilast, a PDE4 inhibitor on ciliary beat frequency in human nasal epithelial cells. Eur Respir J Suppl 639s:P3651Google Scholar
  127. Milara J, Cortijo J, Mata M, Donet E, Mauricio M, Morcillo EJ (2008b) The PDE4 inhibitor roflumilast N-oxide partly reversed TGFß1-induced changes in collagen I and E-cadherin expression in human airway epithelial cells. Eur Respir J (Suppl) 639s:P3648, abstractGoogle Scholar
  128. Morley J, Sanjar S, Page CP (1984) Platelet activation as a basis for asthma exacerbation. Lancet 2:1142–1144PubMedCrossRefGoogle Scholar
  129. Murray JL, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504PubMedCrossRefGoogle Scholar
  130. Muzaffar S, Shukla N, Angelini GD, Jeremy JY (2008). Roflumilast N-oxide inhibits NADPH oxidase expression and activity in human pulmonary artery smooth muscle cells; Proc Br Pharmacol Soc 027P, (abstract).Google Scholar
  131. Naline E, Qian Y, Advenier C, Raeburn D, Karlsson J-A (1996) Effects of RP 73401, a novel, potent and selective phosphodiesterase type 4 inhibitor, on contractility of human, isolated bronchial muscle. Br J Pharmacol 118:1939–1944PubMedGoogle Scholar
  132. Nicholson CD, Jackman SA, Wilke R (1989) The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the re-uptake site. Br J Pharmacol 97:889–897PubMedGoogle Scholar
  133. Nicholson CD, Challiss RAJ, Shahid M (1991) Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 12:19–27PubMedCrossRefGoogle Scholar
  134. Nielson CP, Vestal RE, RJ S, Heaslip R (1990) Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. J Alllergy Clin Immunol 86:801–808CrossRefGoogle Scholar
  135. O’Connolly M, Dierdorf D, Greb WH, Mayer M-ER, Wolf D (1988) Efficacy of denbuffylline in patients with multi-infarct dementia. Dru Dev Res 14:195–198CrossRefGoogle Scholar
  136. Ohta K, Fukuchi Y, Grouse L, Mizutani R, Rabe KF, Rennard SI, Zhong N-S (2004) A prospective clinical study of theophylline safety in 3810 elderly with asthma or COPD. Respir Med 98:1016–1024PubMedCrossRefGoogle Scholar
  137. Orange RO, Austen WG, Austen KF (1971) Immunological release of histamine and slow-reacting substance of anaphylaxis from human lung. J Exp Med 134:136–148PubMedGoogle Scholar
  138. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML, Mallis GI, Sollano JA, Shannon J, Tendon PK, DeMets DL (1991) Effect of oral milrinone on mortality in severe heart failure. N Engl J Med 3325:1468–1475CrossRefGoogle Scholar
  139. Pedemonte N, Galietta L (2008). Stimulation of CFTR-dependent chloride secretion by roflumilast. Eur Respir J Suppl 644s:P3672.Google Scholar
  140. Persson CG (1985) On the medical history of xanthines and other remedies for asthma: a tribute to HH Salter. Thorax 40:881–886PubMedCrossRefGoogle Scholar
  141. Pilcher JD (1912) The action of caffein on the mammalian heart. J Pharmacol Exp Med 3:609-–624Google Scholar
  142. Plant OH (1914) A note of the efficiency of the Knowlton-Starling isolated heart-lung preparation for testing the action of drugs. J Pharmacol Exp Med 5:603–614Google Scholar
  143. Poech G, Kukovetz WR (1971) Papaverine – induced inhibition of phosphodiesterase activity in various mammalian tissues. Life sci 10:133–144CrossRefGoogle Scholar
  144. Polson JB, Krzanowski JJ, Szentivani A (1982) Inhibition of a high cyclic AMP phosphodiesterase and relaxation of canine tacheal smooth muscle. Biochem Pharmacol 21:3403–3406CrossRefGoogle Scholar
  145. Rabe KF, Tenor H, Dent G, Schudt C, Liebig S, Magnussen (1993) Phosphodiesterase isozymes modulating inherent tone in human airways: identification and characterization. Am J Physiol 264:L458–L464PubMedGoogle Scholar
  146. Rabe KF, Tenor H, Dent G, Schudt C, Nakashima M, Magnussen H (1994) Identification of PDE isoenzymes in human pulmonary artery and effect of selective PDE inhibitors. Am J Physiol 266:L536–L543PubMedGoogle Scholar
  147. Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1091PubMedGoogle Scholar
  148. Rall TW, West TC (1963) The potentiation of cardiac inotropic responses to norepinephrine by theophylline. J Pharmacol Exp Ther 139:269–274PubMedGoogle Scholar
  149. Rau S (2001) Von Coffein zum Furosemid. Entdeckung, Erforschung und Entwicklung der Diuretika im 20. Jahrhundert. Peter Lang, Frankfurt aMGoogle Scholar
  150. Reaburn D, Underwood SL, Lewis SA, Woodman VR, Battram CH, Tomkinson A, Sharma S, Jordan R, Souness JE, Webber SE, Karlsson J-A (1994) Anti-inflammatory and bronchodilator properties of RP 73401, a novel and selective phosphodiesterase type IV inhibitor. Br J Pharmacol 113:1423–1431Google Scholar
  151. Reeves ML, Leigh PK, England PJ (1987) The identification of a new cyclic nucleotide phosphodiesterase in human and guinea-pig cardiac ventricle. Biochem J 241:535–541PubMedGoogle Scholar
  152. Robichaud A, Savoie C, Stamatiou LN, Jolicoeur P, Rasori R, Chan CC (2002) Assessing the potential of PDE4 inhibitors in rats. Br J Pharmacol 135:113–118PubMedCrossRefGoogle Scholar
  153. Robicsek SA, Krzanovski JJ, Szentivani A, Polson JB (1989) High pressure liquid chromatography of cyclic ncleotide phosphodiesterase from purified human T-lymphocytes. Biochem Biophys Res Comm 163:554–560PubMedCrossRefGoogle Scholar
  154. Robicsek SA, Blanchard DK, Djeu JY, Krzanowski JJ, Szentivani A, Polson JB (1991) Multiple high-affinity cAMP-phosphodiesterases in human T-lymphocytes. Biochem Pharmacol 42:869–877PubMedCrossRefGoogle Scholar
  155. Rosengarten B, Schermuly RT, Voswinkel R, Kohstall MG, Olschewski H, Weissmann N, Seeger W, Kaps M, Grimminger F, Ghofrani HA (2006) Sildenafil improves dynamic vascular function in the brain: studies in patients with pulmonary hypertension. Cerebrovasc Dis 21:194–200PubMedCrossRefGoogle Scholar
  156. Rudd MR, Gellert AR, Studdy PR, Geddes DM (1983) Inhibition of exercise-induced asthma by an orally absorbed mast cell stabilizer (M&B 22, 948). Br J Dis Chest 77:78–86PubMedCrossRefGoogle Scholar
  157. Russo LL, Lebel LA, Koe RB (1987) Effects of selected phosphodiesterase (PDE) inhibitors on calcium-independent PDE activity and rolipram binding sites of cerebral cortex. Soc Neurosci Abstr 13:903Google Scholar
  158. Salter HH (1860) Asthma. Its pathology and treatment. Churchill, LondonGoogle Scholar
  159. Sanz MJ, Cortijo J, Taha MA, Cerdá-Nicolás M, Schatton E, Burgbacher B, Klar J, Tenor H, Schudt C, Issekutz AC, Hatzelmann A, Morcillo EJ (2007) Roflumilast inhibits leukocyte-endothelial cell interactions, expression of adhesion molecules and microvascular permeability. Br J Pharmacol 152:481–492PubMedCrossRefGoogle Scholar
  160. Schade FU, Schudt C (1993) The specific type III and IV phosphodiesterase inhibitor zardaverine suppresses formation of tumor necrosis factor by macrophages. Eur J Pharmacol 230:9–14PubMedCrossRefGoogle Scholar
  161. Schermuly RT, Ghofrani HA, Enke B, Weissmann N, Grimminger F, Seeger W, Schudt C, Wallmarath D (1999) Low-dose systemic phosphodiesterase inhibitors amplify the pulmonary vasodilatory response to inhaled prostacyclin in experimental pulmonary hypertension. Am J Respir Crit Care Med 160:1500–1506PubMedGoogle Scholar
  162. Schmiechen R, Schneider HH, Wachtel H (1990) Close correlation between behavioural response and binding in vivo for inhibitors of rolipram-sensitive phosphodiesterase. Psychopharmacology 102:17–20PubMedCrossRefGoogle Scholar
  163. Schneider HH, Schmiechen R, Brezinski M, Seidler J (1986) Stereospecific binding of the antidepressant rolipram to brain protein structures. Eur J Pharmacol 127:105–115PubMedCrossRefGoogle Scholar
  164. Schroeder Wv (1887) Ueber die Wirkung des Coffeins als Diuretikum. Arch Exp Path Pharmacol 22:39–61CrossRefGoogle Scholar
  165. Schudt C, Winder S, Eltze M, Kilian U, Beume R (1991a) Zardaverine: a cyclic AMP specific PDE III/IV inhibitor. Agents Actions (Suppl) 34:379–402Google Scholar
  166. Schudt C, Winder S, Forderkunz S, Hatzelmann A, Ullrich V (1991b) Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai. Naunyn-Schmiedeberg’s Arch Pharmacol 344:682–690Google Scholar
  167. Schudt C, Winder S, Mueller B, Ukena D (1991c) Zardaverine as a selective inhibitor of phosphodiesterase isozymes. Biochem Pharmacol 42:153–161PubMedCrossRefGoogle Scholar
  168. Schudt C, Tenor H, Wendel A, Eltze M, Magnussen H, Rabe KF (1993) Influence of the PDEIII/IV inhibitor B9004-070 on contraction and PDE activities in airway and vascular smooth muscle. Am Rev Respir Dis 147:A183Google Scholar
  169. Semmler J, Wachtel H, Endres S (1993) The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-α production by human mononuclear cells. Int J Immunopharmac 15:409–413CrossRefGoogle Scholar
  170. Seybold J, Newton R, Wright L, Finney PA, Suttorp N, Barnes PJ, Adcock IM, Giembycz MA (1998) Induction of phosphodiesterases 3B, 4A4, 4D1, 4D2, and 4D3 in Jurkat T-cells and in human peripheral blood T-lymphocytes by 8-bromo-cAMP and Gs-coupled receptor agonists. J Biol Chem 273:20575–20588PubMedCrossRefGoogle Scholar
  171. Simet SM, Sisson JH, Pavlik JA, Devasure JM, Boyer C, Liu X, Kawasaki S, Sharp JG, Rennard SI, Wyatt TA (2009) Long-term cigarette smoke exposure in a mouse model of ciliated epithelial cell function. Am J Respir Cell Mol Biol 43(6):635–640PubMedCrossRefGoogle Scholar
  172. Souness JE (1996) Characterization of different states of PDE4 by rolipram and RP 73401. In: Schudt C, Dent G, Rabe KF (eds) Phosphodiesterase inhibitors. Academic, LondonGoogle Scholar
  173. Souness JE, Griffin M, Maslen C, Ebsworth K, Scott LC, Pollock K, Palfreyman N, Karlsson J-A (1996) Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF generation from human monocytes by interacting with a “low affinity” phosphodiesterase 4 conformer. Br J Pharmacol 118:649–658PubMedGoogle Scholar
  174. Souness JE, Houghton C, Sardar N, Withnall MT (1997) Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a “low-affinity” phosphodiesterase 4 conformer. Br J Pharmacol 121:743–750PubMedCrossRefGoogle Scholar
  175. Stawiski MA, Rusin LJ, Burns TL, Weinstein GD, Voorhees JJ (1979) Ro 20-1724: an agent that significantly improves psoriatric lesions in double-blind clinical trials. J Invest dermatol 73:261–263PubMedCrossRefGoogle Scholar
  176. Takeyama K, Jung B, Shim JJ, Burgel PR, Dao-Pick T, Ueki IF, Protin U, Kroschel P, Nadel JA (2001) Activation of epidermal growth factor receptors is responsible for mucin synthesis induced by cigarette smoke. Am J Physiol Lung Cell Mol Physiol 280:L165–72PubMedGoogle Scholar
  177. Tenor H, Schudt C (1996) Analysis of PDE isoenzyme profiles in cells and tissues by pharmacological methods. In: Schudt C, Dent G, Rabe KF (eds) Phosphodiesterase inhibitors. Academic, LondonGoogle Scholar
  178. Tenor H, Hatzelmann A, Wendel A, Schudt C (1995a) Identification of phosphodiesterase IV activity and its cyclic adenosine monophosphate-dependent up-regulation in a human keratinocyte cell line (HACAT). J Invest Dermatol 105:70–74PubMedCrossRefGoogle Scholar
  179. Tenor H, Staniciu L, Schudt C, Hatzelmann A, Wendel A, Djukanovic R, Church MK, Shute JK (1995b) Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clin Exp Allergy 25:616–624PubMedCrossRefGoogle Scholar
  180. Tenor H, Hatzelmann A, Kupferschmidt R, Staniciu L, Djukanovic R, Schudt C, Wendel A, Church MK, Shute JK (1995c) Cyclic nucleotide phosphodiestererase isoenzyme activities in human alveolar macrophages. Clin Exp Allergy 25:625–6333PubMedCrossRefGoogle Scholar
  181. Tenor H, Hatzelmann A, Church MK, Schudt C, Shute JK (1996) Effects of theophylline and rolipram on leukotriene C4 (LTC4) synthesis and chemotaxis of human eosinophils from normal and atopic subjects. Br J Pharmacol 118:1727–1735PubMedGoogle Scholar
  182. Tenor H, Burgbacher B, Schudt C, Hatzelmann A (2005) Effects of roflumilast and other PDE4 inhibitors on human CD8+ T-cell functions. Eur Respir J Suppl 26:717sGoogle Scholar
  183. Tenor H, Bundschuh D, Schudt C, Bredenbröker D, Hatzelmann A (2007) Phosphodiesterase 4 inhibitors in the treatment of COPD. In: Stockley RS, Renard SI, Rabe KF, Celli B (eds) Chronic obstructive pulmonary disease. Blackwell, OxfordGoogle Scholar
  184. Thompson WJ, Appleman MM (1971) Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 10:311–316PubMedCrossRefGoogle Scholar
  185. Thompson WJ, Ross CP, Pledger WJ, Strada SJ, Banner RL, Hersh EM (1976) Cyclic adenosine 3′:5′-monophosphate phosphodiesterase: distinct forms in human lymphocytes and monocytes. J Biol Chem 251:4922–4929PubMedGoogle Scholar
  186. Thompson WJ, Terasaki WL, Epstein PM, Strada SJ (1979) Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucl Res 10:69–92Google Scholar
  187. Thorne JR, Broadley KJ (1994) Adenosine-induced bronchoconstriction in conscious hyperresponsive and sensitized guinea-pigs. Am J Respir Crit Care Med 149:392–399PubMedGoogle Scholar
  188. Thusu KJ, Morin FC, Russell JA, Steinhorn RA (1995) The cGMP phosphodiesterase inhibitor zaprinast enhances the efffect of nitric oxide. Am J Respir Crit Care Med 152:1605–1610PubMedGoogle Scholar
  189. Togo S, Liu X, Wang X, Sugiura H, Kamio K, Kawasaki S, Kobayashi T, Ertl RF, Ahn Y, Holz O, Magnussen H, Fredriksson K, Skold CM, Rennard SI (2009) The PDE4 inhibitors roflumilast and rolipran augment PGE2 inhibition of TGFß1 stimulated fibroblasts. Am J Physiol Lung Cell Mol Physiol 296:L959–L969PubMedCrossRefGoogle Scholar
  190. Tomkinson A, Karlsson J-A, Raeburn D (1993) Comparison of the effects of selective inhibitors of phosphodiesterase type III an IV in airway smooth muscle with differing ß-adrenoceptor subtypes. Br J Pharmacol 108:57–61PubMedGoogle Scholar
  191. Torphy TJ, Cieslinsky LB (1989) Characterization and selective Inhibition of cyclic nucleotide phosphodiesterase isoenzymes in canine tracheal smooth muscle. Mol Pharmacol 37:206–214Google Scholar
  192. Torphy TJ, Undem BJ (1991) Phosphodiesterase inhibitors: new opportunities for treatment of asthma. Thorax 46:512–523PubMedCrossRefGoogle Scholar
  193. Torphy TJ, Burman M, Huang LB, Tucker SS (1988) Inhibition of the low Km cyclic AMP phosphodiesterase in intact canine trachealis by SKF 94863: mechanical and biochemical responses. J Pharmacol Exp Ther 246:843–850PubMedGoogle Scholar
  194. Torphy TJ, Zhou HL, Cieslinski LB (1992a) Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulatis cyclic AMP-specific phosphodiesterase activity. J Pharmacol Exp Ther 263:1195–1205PubMedGoogle Scholar
  195. Torphy TJ, Stadel JM, Burman M, Cieslinski LB, McLaughlin MM, With JR, Livi GP (1992b) Coexpression of human cAMP-specific phosphodiesterase activity and high affinity rolipram binding in yeast. J Biol Chem 267:1796–1804Google Scholar
  196. Torphy TJ, Undem BJ, Cieslinski LB, Luttmann MA, Reeves ML, Hay DW (1993) Identification, characterization and functional role of phosphodiesterase isozymes in human airway smooth muscle. J Pharmacol Exp Ther 265:1213–1223PubMedGoogle Scholar
  197. Trendelenburg O (1912) Physiologische und pharmakologische Untersuchungen an der isolierten Bronchialmuskulatur. Arch Exp Path Pharmacol 69:79–107CrossRefGoogle Scholar
  198. Tudor RM, Voelkel NF (2002) The pathobiology of chronic bronchitis and emphysema. In: Voelkel NF, MacNee W (eds) Chronic obstructive lung disease. BC Decker, LondonGoogle Scholar
  199. Underwood DC, Osborn RR, Novak LB, Matthews JK, Newsholme SJ, Undem BJ, Hand JM, Torphy TJ (1993) Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cAMP-specific phosphodiesterase inhibitor rolipram. J Pharmacol Exp Ther 266:306–313PubMedGoogle Scholar
  200. Underwood DC, Kotzer CJ, Bochnovicz S, Osborn RR, Luttmann MA, Hay DWP, Torphy TJ (1994) Comparison of Phosphodiesterase III, IV and dual III/IV inhibitors on bronchospasm and pulmonary eosinophil influx in guinea pigs. J Pharmacol Exp Ther 270:250–259PubMedGoogle Scholar
  201. Verghese MW, McConnell RT, Lenhard JM, Hamacher L, Jin C (1995) Regulation of distinct cyclic AMP-specific phosphodiesterase (posphodiesterase type 4) isozymes in human monocytic cells. Mol Pharmacol 47:1164–1171PubMedGoogle Scholar
  202. Virag R, Zwang G, Dermange H, Legman M (1981) Vasculogenic impotence: a review of 92 cases in 54 surgical operations. Vasc Sug 15:9–17Google Scholar
  203. Vogel HG (2002) Drug discovery and evaluation. Springer, HeidelbergCrossRefGoogle Scholar
  204. Wachtel H (1983) Species differences in behavioural effects of rolipram and other adenosine cyclic 3, 5-monophosphate phosphodiesterase inhibitors. J Neural Transm 56:139–152PubMedCrossRefGoogle Scholar
  205. Wachtel H, Schneider HH (1986) Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors. Neuropharmacology 25:1119–1126PubMedCrossRefGoogle Scholar
  206. Weidenbach A, Braun C, Schwoebel F, Beume R, Marx D (2008a) Steroid-insensitivity in a short-term model of cigarette smoke-induced pulmonary inflammation in mice. Am J Respir Crit Care Med (Suppl) A651 (abstract)Google Scholar
  207. Weidenbach A, Braun C, Schwoebel F, Beume R, Marx D (2008b) Therapeutic effects of various PDE4 inhibitors on cigarette smoke-induced pulmonary neutrophilia in mice. Am J Respir Crit Care Med (Suppl) A651 (abstract)Google Scholar
  208. Weishaar RE, Cain MH, Bristol JA (1985) A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J Med Chem 28:537–545PubMedCrossRefGoogle Scholar
  209. Weisshaar RE, Quade M, Boyd D, Schenden J, Marks S, Kaplan HR (1983) The effect of several “new and novel” cardiotonic agents on key subcellular processes involved in the regulation of myocardial contractility: implications for mechanism of action. Drug Dev Res 3:517–534CrossRefGoogle Scholar
  210. Wetzel B, Hauel N (1988) New cardiotonic agents – a promising approach for treatment of heart failure. Trends Pharmacol Res 9:166–170CrossRefGoogle Scholar
  211. Wilkens JH, Neuenkirchen H, Sybrecht GW, Oellerich M (1984) Individualizing theophylline dosage: evaluation of a single-point maintenance dose prediction method. Eur J Clin Pharmacol 26:491–498PubMedCrossRefGoogle Scholar
  212. Wohlsen A, Wollin L, Marx D, Beume R (2006). Effect of roflumilast and other cAMP elevating agents on airway beat ciliary frequency in proximal and distal airways in rat precision cut lung slices. Fifth international multidisciplinary Conference on Chronic Obstructive Pulmonary Disease (COPD5), June 28–30, Birmingham, UK: Poster P25.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Schudt
    • 1
  • Armin Hatzelmann
    • 2
  • Rolf Beume
    • 2
  • Hermann Tenor
    • 2
  1. 1.Department of BiologicsNycomed GmbHKonstanzGermany
  2. 2.Nycomed GmbHKonstanzGermany

Personalised recommendations