Advertisement

Round-Optimal Deniable Ring Authentication in the Presence of Big Brother

  • Rafael Dowsley
  • Goichiro Hanaoka
  • Hideki Imai
  • Anderson C. A. Nascimento
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6513)

Abstract

In this work we propose a Deniable Ring Authentication scheme secure against a powerful Big Brother type of adversary and yielding an optimal number of communication rounds. Our scheme is based on an infra-structure assumption: the existence of verifiable Broadcast Encryption. Particularly, our solution can be instantiated by using the Broadcast Encryption protocol of Boneh, Gentry and Waters (CRYPTO 2005), resulting in a Deniable Ring Authentication protocol with constant message size.

Keywords

Deniable Ring Authentication Broadcast Encryption Big Brother 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Boyen, X., Goh, E.: Hierarchical Identity Based Encryption with Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of Computing 33, 167–226 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. on Info. Theory IT-22, 644–654 (1976)Google Scholar
  6. 6.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption Secure Against Adaptive Chosen Ciphertext Attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: STOC 1998, pp. 409–418 (1998)Google Scholar
  10. 10.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. J. Cryptology 7(1), 1–32 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-based Revocation in Groups of Low-state Devices. In: CRYPTO 2004. LNCS, vol. 2204, Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008), http://eprint.iacr.org/2008/211 CrossRefGoogle Scholar
  16. 16.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Computational Diffie-Hellman in Cryptographic Groups. J. Cryptology 16(4), 239–247 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Naor, M.: Deniable Ring Authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  22. 22.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rafael Dowsley
    • 1
  • Goichiro Hanaoka
    • 2
  • Hideki Imai
    • 2
  • Anderson C. A. Nascimento
    • 1
  1. 1.Department of Electrical EngineeringUniversity of BrasíliaBrasíliaBrazil
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)Chyioda-kuJapan

Personalised recommendations