Improving the Energy Efficiency of Wireless Sensors through Smart Antenna Design

  • A. Mason
  • A. Shaw
  • A. I. Al-Shamma’a

Abstract

There is a growing trend in the use of intelligent Wireless Sensor Networks (WSNs) for a wide range of applications. In the early part of the decade the underlying hardware was largely in prototype form and used for small scale demonstration systems, but there is now growing interest in applications which are commercially viable. This work began on the premise that the sensor hardware has gradually become smaller, yet there are still a few peripheral components which are lagging behind; namely the battery and antenna. Here, a novel antenna design is presented; this antenna is of a practical size for use in WSNs, whilst also offering improved energy consumption over commonly used monopole antennas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crossbow (2004). MPR/MIB Users Manual, http://www.xbow.com/ (April 6, 2010)
  2. 2.
    Mason, A., et al.: Inventory Management in The Packaged Gas Industry Using Wireless Sensor Networks. In: Mukhopadhyay, S.C., Leung, H. (eds.) Advances in Wireless Sensors and Sensor Networks, 1st edn., vol. 64, pp. 75–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    A. Mason, et al.: Asset Tracking: Beyond RFID. Presented at the 7th Annual Postgraduate Symposium on the Convergence of Telecommunications (PGNET), Liverpool John Moores University, Liverpool, UK (2006)Google Scholar
  4. 4.
    Mason, A.: Wireless Sensor Networks and their Industrial Applications, PhD, General Engineering Research Institute, Liverpool John Moores University, Liverpool (2008)Google Scholar
  5. 5.
    Balanis, C.: Microstrip Antennas. In: Antennas: Theory, Analysis and Design, 2nd edn., pp. 727–730. Wiley, Chichester (1996)Google Scholar
  6. 6.
    Ulaby, F.: Quarter wave monopole antenna. In: Fundamentals of Applied Electromagnetics, p. 358. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  7. 7.
    Balanis, C.: Loop Antennas. In: Antennas: Theory, Analysis and Design, 2nd edn., p. 203. Wiley, Chichester (1996)Google Scholar
  8. 8.
    Blake, L.: Radiation Resistance and Efficiency. In: Antennas, pp. 138–139. John Wiley & Sons, Chichester (1966)Google Scholar
  9. 9.
    Balanis, C.: Bandwidth. In: Antennas: Theory, Analysis and Design, 2nd edn., pp. 63–64. Wiley, Chichester (1996)Google Scholar
  10. 10.
    Garg, R., et al.: Broadbanding of Microstrip Antennas. In: Microstrip Antenna Design Handbook, pp. 534–535. Artech House, Norwood (2000)Google Scholar
  11. 11.
    Balanis, C.: Long Wire Antenna Polarisation. In: Antennas: Theory, Analysis and Design, 2nd edn., p. 496. Wiley, Chichester (1996)Google Scholar
  12. 12.
    Nithisopa, K., et al.: Design CPW Fed Slot Antenna for Wideband Applications. Piers Online 3, 1124–1127 (2007)CrossRefGoogle Scholar
  13. 13.
    Garg, R., et al.: Effects of Finite Size Ground Plane. In: Microstrip Antenna Design Handbook, pp. 293–296. Artech House, Norwood (2000)Google Scholar
  14. 14.
    Ansoft. Probe Feed Patch Antenna Example. HFSS Users Guide, http://www.ansoft.com/
  15. 15.
  16. 16.
    Ansoft, Port tutorial series: Coplanar waveguide (CPW). HFSS v8 Training (2005), http://web.doe.carleton.ca/~mmariani/Thesis/port_tutorial_CPW.ppt (22/05/2008)
  17. 17.
    Carr, J.: Transmission Lines Characteristic Impedance. In: Practical Antenna Handbook, 4th edn., p. 67. Tab Books (2001)Google Scholar
  18. 18.
    Balanis, C.: Microstrip Antennas: Patch Antenna Example. In: Antennas: Theory, Analysis and Design, 2nd edn., pp. 727–730. Wiley, Chichester (1996)Google Scholar
  19. 19.
    Kraus, J., Marhefka, R.: Folded Dipole Antennas. In: Antennas for All Applications, pp. 593–597. McGraw Hill Science, New York (2002)Google Scholar
  20. 20.
    Kraus, J., Marhefka, R.: Anechoic Chambers and Absorbing Materials. In: Antennas for All Applications, pp. 841–844. McGraw Hill Science, New York (2002)Google Scholar
  21. 21.
    Ulaby, F.: Plane Wave Propagation in Lossy Media. In: Fundamentals of Applied Electromagnetics, pp. 277–279. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  22. 22.
    Blake, L.: Interference. In: Antennas, pp. 26–27. John Wiley & Sons, Chichester (1966)Google Scholar
  23. 23.
    Carr, J.: Fading Mechanisms. In: Practical Antenna Handbook, 4th edn., p. 35. Tab Books (2001)Google Scholar
  24. 24.
    Basagni, S., et al.: Multipath Fading and Shadowing. In: Mobile Adhoc Networking, pp. 235–236. Wiley-Blackwell (2004)Google Scholar
  25. 25.
    Balanis, C.: Horn Antennas. In: Antennas: Theory, Analysis and Design, 2nd edn., pp. 651–711. Wiley, Chichester (1996)Google Scholar
  26. 26.
    Balanis, C.: Field Regions. In: Antennas: Theory, Analysis and Design, 2nd edn., p. 33. Wiley, Chichester (1996)Google Scholar
  27. 27.
    Blake, L.: Waveguides. In: Antennas, p. 94. John Wiley & Sons, Chichester (1966)Google Scholar
  28. 28.
    Balanis, C.: Antennas: Theory, Analysis and Design, 2nd edn. Wiley, Chichester (1996)Google Scholar
  29. 29.
    Kraus, J., Marhefka, R.: Antennas for All Applications. McGraw Hill Science, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Mason
    • 1
  • A. Shaw
    • 1
  • A. I. Al-Shamma’a
    • 1
  1. 1.Liverpool John Moores UniversityLiverpoolUnited Kingdom

Personalised recommendations