Two Methods for Image Compression/Reconstruction Using OWA Operators

  • H. Bustince
  • D. Paternain
  • B. De Baets
  • T. Calvo
  • J. Fodor
  • R. Mesiar
  • J. Montero
  • A. Pradera

Abstract

In this chapter we address image compression by means of two alternative algorithms. In the first algorithm, we associate to each image an interval-valued fuzzy relation, and we build an image which is n times smaller than the original one, by using two-dimensional OWA operators. The experimental results show that, in this case, best results are obtained with ME-OWA operators. In the second part of the work, we describe a reduction algorithm that replaces the image by several eigen fuzzy sets associated with it. We obtain these eigen fuzzy sets by means of an equation that relates the OWA operators we use and the relation (image) we consider. Finally, we present a reconstruction method based on an algorithm which minimizes a cost function, with this cost function built by means of two-dimensional OWA operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amo, A., Montero, J., Molina, E.: Representation of consistent recursive rules. Eur. Jour. Oper. Res. 130, 29–53 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and algorithms for pattern recognition and image processing. In: Dubois, D., Prade, H. (eds.) The Handbooks of Fuzzy Sets Series. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  4. 4.
    Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence functions and maximizing the measures of similarity. Fuzzy Sets and Systems 158, 496–516 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bustince, H., Barrenechea, E., Pagola, M.: Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy conectives and from K α operators. Laws for conjunctions and disjunctions. Amplitude. International Journal of Intelligent Systems 23, 680–714 (2008)MATHCrossRefGoogle Scholar
  6. 6.
    Bustince, H., Orduna, R., Fernandez, J., et al.: Relation between OWA operator of dimension two and Atanassov’s operators. Construction. In: Proceedings of the 8th International Conference on Fuzzy Logic and Intelligent Technologies in Nuclear Science, September 21-24, vol. 1, pp. 519–524 (2008)Google Scholar
  7. 7.
    Cutello, V., Montero, J.: Hierarchical aggregation of OWA operators, basic measures and related computational problems. Uncert., Fuzz. and Know. -Based Syst. 3, 17–26 (1995)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cutello, V., Montero, J.: Recursive connective rules. Int. J. Intelligent Systems 14, 3–20 (1999)MATHCrossRefGoogle Scholar
  9. 9.
    De Baets, B.: Generalized Idempotence in Fuzzy Mathematical Morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Procesing, pp. 58–73. Springer, Berlin (2000)Google Scholar
  10. 10.
    Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy T-norms and T-conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21, 1–17 (1987)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kerre, E.E., et al. (eds.): Fuzzy Filters for Image Processing. Springer, Berlin (2003)MATHGoogle Scholar
  13. 13.
    Loia, V., Sessa, S.: Fuzzy relation equations for coding/decoding processes of images and videos. Information Sciences 171, 145–172 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets And Systems 158, 2429–2442 (2007)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nachtegael, M., Mélange, T., Kerre, E.E.: The Possibilities of Fuzzy Logic in Image Processing. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 198–208. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Nobuhara, N., Hirota, K., Pedrycz, W., Sessa, S.: Two iterative methods of decomposition of a fuzzy relation for image compression/decomposition processing. Soft Computing 8, 698–704 (2004)MATHCrossRefGoogle Scholar
  17. 17.
    Nobuhara, H., Bede, B., Hirota, K.: On various eigen fuzzy sets and their application to image reconstruction. Information Sciences 176, 2988–3010 (2006)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pedrycz, W., Hirota, K., Sessa, S.: A decomposition of fuzzy relations. IEEE Transaction on Systems, Man, and Cybernetics Part B 31(4), 657–663 (2001)Google Scholar
  19. 19.
    Sambuc, R.: Function Φ-Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne, These de Doctorat en Medicine, University of Marseille (1975)Google Scholar
  20. 20.
    Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1, 69–74 (1978)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sanchez, E.: Eigen fuzzy sets and fuzzy relations. Journal of Mathematical Analysis and Applications 81, 399–421 (1981)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1995)MathSciNetGoogle Scholar
  23. 23.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yager, R.R.: Families of OWA operators. Fuzzy Sets and Systems 59, 125–148 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. Bustince
    • 1
  • D. Paternain
    • 1
  • B. De Baets
    • 2
  • T. Calvo
    • 3
  • J. Fodor
    • 4
  • R. Mesiar
    • 5
  • J. Montero
    • 6
  • A. Pradera
    • 7
  1. 1.Universidad Pública de NavarraPamplonaSpain
  2. 2.Dept. of Applied Mathematics, Biometrics and Process ControlUniversiteit GentGentBelgium
  3. 3.Universidad de AlcaláSpain
  4. 4.Institute of Intelligent Engineering SystemsBudapest TechBudapestHungary
  5. 5.Department of Mathematics and Descriptive GeometrySlovak University of TechnologyBratislavaSlovakia
  6. 6.Facultad de MatemáticasUniversidad ComplutenseMadridSpain
  7. 7.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMóstoles, MadridSpain

Personalised recommendations