Data Mining Technique for Knowledge Discovery from Engineering Materials Data Sets

  • Doreswamy
  • K. S. Hemanth
  • Channabasayya M. Vastrad
  • S. Nagaraju
Part of the Communications in Computer and Information Science book series (CCIS, volume 131)


The goal of this paper is to discuss how data mining technique can be applied in materials informatics to extract knowledge from materials data. Studying material data sets from a data mining perspective can be beneficial for manufacturing and other industrial engineering applications. This work employs an effective materials classification system on design requirements. Experiments were conducted on material datasets that consist of all class of materials. The algorithm of the Naive Bayesian classifier is implemented successively enabling it to solve classification problems and the outcomes can be very useful for design engineers to speed up decision making process in manufacturing and other industrial engineering applications. The comparison of performance with various domains of material classes confirms the advantages of successive learning and suggests its application to other learning domains.


Knowledge Discovery Materials informatics Naive Bayesian Classifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addin, O., Sapuan, S.M., Mahdi, E., Othman, M.: A Naive-Bayes classifier for damage detection in engineering, materials. Materials and Design, 2379–2386 (2007)Google Scholar
  2. 2.
    Addina, A.O., Sapuanb, S.M., Othmanc, M.: A Naïve-Bayes Classifier And F-Folds Feature Extraction Method For Materials Damage Detection. International Journal of Mechanical and Materials Engineering (IJMME) 2(1), 55–62 (2007)Google Scholar
  3. 3.
    Bhargavia, P., Jyothi, S.: Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils. International Journal of Computer Science and Network Security 9(8), 117–122 (2009)Google Scholar
  4. 4.
    Doreswamy, Sharma, S.C.: An Expert Decision Support System for Engineering Materials Selections And Their Performance Classifications on Design Parameters. International Journal of Computing and Applications (ICJA) 1(1), 17–34 (2006)Google Scholar
  5. 5.
    Doreswamy: A survey for Data Mining framework for polymer Matrix Composite Engineering materials Design Applications. International Journal of Computational Intelligence Systems (IJCIS) 1(4), 312–328 (2008)Google Scholar
  6. 6.
    Doreswamy: Engineering Materials Classification Model- A Neural Network Application. IJDCDIS A Supplement, Advances in Neural Networks 14(S1), 591–595 (2007)Google Scholar
  7. 7.
    Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan KaufmannPublisher, San Francisco (2009)zbMATHGoogle Scholar
  8. 8.
    Khor, K.-C., Ting, C.-Y., Amnuaisuk, S.-P.: From Feature Selection to Building of Bayesian Classifiers: A Network Intrusion Detection Perspective. American Journal of Applied Sciences 6(11), 1949–1960 (2009)Google Scholar
  9. 9.
    Langseth, H., Nielsen, T.: Classification using Hierarchical Naïve Bayes models. Machine Learning 63(2), 135–159 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chikyow, T.: Trends In Materials Informatics In Research On Inorganic Materials. Quarterly Review 20, 59–71 (2006)Google Scholar
  11. 11.
    Qunyi, W., Xiaodong, P., Xiangguo, L., Weidong, X.: Materials informatics and study on its further development. Chinese Science Bulletin 51(4), 498–504 (2006)CrossRefGoogle Scholar
  12. 12.
    Callister, W.D.: Materials Science and Engineering. Wiley India Pvt. (2007)Google Scholar
  13. 13.
    Suh, C., Rajan, K.: Data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure-property relationships. Materials Science And Technology 25, 466–471 (2009)CrossRefGoogle Scholar
  14. 14.
    Scott, D. J., Coveney, P.V., Kilner, J. A., Rossiny, J., Alford, N.: Prediction of the functional properties of ceramic materials from composition using artificial neural networks. Journal Of The European Ceramic Society 27, 4425–4435 (2007)CrossRefGoogle Scholar
  15. 15.
    Ferris, F., Peurrung, L.M., Marder, J.: Materials informatics: Fast track to new materials. Advanced Materials & Processes 165, 50–51 (2007)Google Scholar
  16. 16.
    Yu., G., Chen., J., Zhu, L.: Data mining techniques for materials informatics: Datasets Preparing and Applications. In: Proc. 2009 Second International Symposium on Knowledge Acquisition and Modeling, pp. 181–189 (2009)Google Scholar
  17. 17.
    Rodgers, J.R., Cebon, D.: Materials informatics. MRS Bulletin 31, 975–980 (2006)CrossRefGoogle Scholar
  18. 18.
    Rodgers, J.R.: Materials informatics: Knowledge acquisition for materials design. Abstracts Of Papers Of The American Chemical Society 226, 302–303 (2003)Google Scholar
  19. 19.
    Rajan, K.: Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. Annual Review Of Materials Research 38, 299–322 (2008)CrossRefGoogle Scholar
  20. 20.
    Rajan, K.: Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. Annual Review Of Materials Research 38, 299–322 (2008)CrossRefGoogle Scholar
  21. 21.
    Moliner, M., Serra, J.M., Corma, A., Argente, E., Valero, S., Botti, V.: Application of artificial neural networks to high-throughput synthesis of zeolites. Microporous and Mesoporous Materials 78, 73–81 (2005)CrossRefGoogle Scholar
  22. 22.
    Fischer, C., Tibbetts, K.J., Morgan, D., Ceder, G.: Predicting crystal structure by merging data mining with quantum mechanics. Nature Materials 5, 641–646 (2006)CrossRefGoogle Scholar
  23. 23.
    Song, Q.G.: A preliminary investigation on materials informatics. Chinese Science Bulletin 49, 210–214 (2004)CrossRefGoogle Scholar
  24. 24.
    Wei, Q.Y., Peng, X.D., Liu, X.G., Xie, W.D.: Materials informatics and study on its further development. Chinese Science Bulletin 51, 498–504 (2006)CrossRefGoogle Scholar
  25. 25.
    Hrubiak, R., George, L., Saxena, S.K., Rajan, K.: A Materials Database for Exploring Material Properties. Journal of Materials 61, 59–62 (2009)Google Scholar
  26. 26.
    Rajan, K.: Informatics and Integrated Computational Materials Engineering: Part II. JOM 61, 47–47 (2009)CrossRefGoogle Scholar
  27. 27.
    Broderick, S., Suh, C., Nowers, J., Vogel, B., Mallapragada, C., Narasimhan, B., Rajan, K.: Informatics for combinatorial materials science. JOM 60, 56–59 (2008)CrossRefGoogle Scholar
  28. 28.
    Takeuchi, I., Lippmaa, M., Matsumoto, Y.: Combinatorial experimentation and materials informatics. MRS Bulletin 31, 999–1003 (2006)CrossRefGoogle Scholar
  29. 29.
    Hunt, W.H.: Materials informatics: Growing from the bio world. JOM 58, 88–88 (2006)CrossRefGoogle Scholar
  30. 30.
    Inmon, W.H.: Building the Data Warehouse, 4th edn. John Wiley and Sons, Inc., New York (2007)Google Scholar
  31. 31.
    Li, Y.: Predicting materials properties and behaviour using classification and regression trees. Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing 433, 261–268 (2006)CrossRefGoogle Scholar
  32. 32.
    Westbrook, J.H.: Materials Data On The Internet. Data Science Journal 2(25), 198–211 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Doreswamy
    • 1
  • K. S. Hemanth
    • 1
  • Channabasayya M. Vastrad
    • 2
  • S. Nagaraju
    • 3
  1. 1.Department of Computer ScienceMangalore UniversityMangalagangotriIndia
  2. 2.Department Computer Science & EngineeringPDITHospetIndia
  3. 3.Department Computer Science & EngineeringBahubali College of EngineeringShravanabelagola, HassanIndia

Personalised recommendations