Parallel Deblocking Filter for H.264/AVC on the TILERA Many-Core Systems

  • Chenggang Yan
  • Feng Dai
  • Yongdong Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6523)


For the purpose of accelerating deblocking filter, which accounts for a significant percentage of H.264/AVC decoding time, some studies use wavefront method to achieve the required performance on multi-core platforms. We study the problem under the context of many-core systems and present a new method to exploit the implicit parallelism. We apply our implementation to the deblocking filter of the H.264/AVC reference software JM15.1 on a 64-core TILERA and achieve more than eleven times speedup for 1280*720(HD) videos. Meanwhile the proposed method achieves an overall decoding speedup of 140% for the HD videos. Compared to the wavefront method, we also have a significant speedup 200% for 720*576(SD) videos.


Video decoding H.264/AVC Deblocking filter Parallel algorithm Many-core systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joint Video Team of ITU-T and ISO/IEC JTC1. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050 (2003)Google Scholar
  2. 2.
    List, P., Joch, A., Lainema, J., Bjntegaard, G., Karczewicz, M.: Adaptive deblocking filter. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 614–619 (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, T.C., Fang, H.C., Lian, C.J., Tsai, C.H., Huang, Y.W., Chen, T.W., et al.: Algorithm analysis and architecture design for HDTV applications-a look at the H. 264/AVC video compressor system. IEEE Transactions on Circuits and Devices Magazine 22(3), 22–31 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhao, Z., Liang, P.: Data partition for wavefront parallelization of H.264 video encoder. In: IEEE International Symposium on Circuits and Systems, ISCAS 2006, pp. 21–24 (2006)Google Scholar
  5. 5.
    Lee, J.-Y., Lee, J.-J., Park, S.M.: Multi-core platform for an efficient H.264 and VC-1 video decoding based on macroblock row-level parallelism. IET Circuits, Devices & Systems (2010)Google Scholar
  6. 6.
    Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Mesa, M.A., Ramirez, A.: Parallel Scalability of Video Decoders. Delft University of Technology (2008)Google Scholar
  7. 7.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools. Addison-Wesley Longman, Boston (2007)MATHGoogle Scholar
  8. 8.
    Friedrich, J., McCredie, B., James, N., et al.: Design of the Power6TM Microprocessor. ISSCC Dig. Tech. Papers, pp. 96–97 (2007)Google Scholar
  9. 9.
    Dorsey, J., Searles, S., Ciraula, M., et al.: An Integrated Quad-CoreTM Opteron Processor. ISSCC Dig. Tech. Papers, pp. 102–103 (2007)Google Scholar
  10. 10.
    Nawathe, U., Hassan, M., Warriner, L., et al.: An 8-Core 64-Thread 65b Power-Efficient SPARC SoC. ISSCC Dig. Tech. Papers, pp. 108–109 (2007)Google Scholar
  11. 11.
    Taylor, M., Kim, J., Miller, J., et al.: A 16-Issue Multiple-Program-Counter Microprocessor with Point-to-Point Scalar Operand Network. ISSCC Dig. Tech. Papers, pp. 170–171 (2003)Google Scholar
  12. 12.
    Vangal, S., et al.: An 80-tile 1.28TFLOPS Network-on-Chip in 65nm CMOS. ISSCC Dig. Tech. Papers, p. 98 (2007)Google Scholar
  13. 13.
    Agarwal, A., Bao, L., Brown, J., et al.: Tile Processor: Embedded Multicore for Networking and Digital Multimedia. Hot Chips (2007)Google Scholar
  14. 14.
    Bell, S., Edwards, B., Amann, J., et al.: TILE64-Processor: A 64-Core SoC with Mesh. In: Interconnect Solid-State Circuits Conference (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chenggang Yan
    • 1
    • 2
  • Feng Dai
    • 1
  • Yongdong Zhang
    • 1
  1. 1.Multimedia Computing Group, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations