Adaptive Orthogonal Transform for Motion Compensation Residual in Video Compression

  • Zhouye Gu
  • Weisi Lin
  • Bu-sung Lee
  • Chiew Tong Lau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6523)

Abstract

Among the orthogonal transforms used in video and image compression, the Discrete-Cosine-Transform (DCT) is the most commonly used one. In the existing video codecs, the motion-compensation residual (MC-residual) is transformed with the DCT. In this paper, we propose an adaptive orthogonal transform that performs better on the MC-residual than the DCT. We formulate the proposed new transform based on L1-Norm minimization with orthogonal constraints. With the DCT matrix as the starting point, it is guaranteed to derive a better orthogonal transform matrix in terms of L1-Norm minimization. The experimental results confirm that, with little side information, our method leads to higher compression efficiency for the MC-residual. Remarkably, the proposed transform performs better in the high/ complex motion situation.

Keywords

Motion Compensation Residual Transform Coding L1-Norm Minimization Orthogonal Constraints Video Coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Niehsen, W., Brunig, M.: Covariance analysis of motion-compensated frame differences. IEEE T-CSVT 9(4), 536–539 (1999)Google Scholar
  2. 2.
    Chen, F., Pang, K.: The optimal transform of motion-compensated frame difference images in a hybrid coder. IEEE T-CAS2 40(6), 393–397 (1993)MATHGoogle Scholar
  3. 3.
    Hui, K.-C., Siu, W.-C.: Extended analysis of motion-compensated frame difference for block-based motion prediction error. IEEE T-IP 16(5), 1232–1245 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Waldemar, P., Ramstad, T.A.: Hybrid KLT-SVD Image Compression. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4, pp. 2713–2716 (1997)Google Scholar
  5. 5.
    Dapena, A., Ahalt, S.: A Hybrid DCT-SVD Image-Coding Algorithm. IEEE T-CSVT 12, 114–121 (2002)Google Scholar
  6. 6.
    Ochoa, H., Rao, K.R.: A Hybrid DWT-SVD Image-Coding System (HDWTSVD) for Monochromatic Images. WSEAS Transaction on Circuit and Systems 4, 419–424 (2005)Google Scholar
  7. 7.
    Donoho, D.L., Elad, M.: Maximal sparsity representation via l1 minimization. Proceedings of the National Academy of Sciences 100(5), 2197–2202 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kwak, N.: Principal component analysis based on L1-norm maximization. IEEE T-PAMI 3(9), 1672–1680 (2008)CrossRefGoogle Scholar
  9. 9.
    Pang, Y., Li, X., Yuan, Y.: Robust Tensor Analysis with L1-Norm. IEEE T-CSVT 20(2), 172–178 (2010)Google Scholar
  10. 10.
    Bjontegaard, G.: Calculation of average PSNR differences between rd-curves, VCEG Contribution VCEG-M33Google Scholar
  11. 11.
    H.264/AVC Reference Software, JM14.0: http://iphome.hhi.de/suehring/tml/
  12. 12.
    Huang, Y., Hsieh, B., Chien, S., Ma, S., Chen, L.: Analysis and complexity reduction of multiple reference frames motion estimation in h.264/AVC. IEEE T-CSVT 16(4), 507–522 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhouye Gu
    • 1
  • Weisi Lin
    • 1
  • Bu-sung Lee
    • 1
  • Chiew Tong Lau
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations