Video Event Retrieval from a Small Number of Examples Using Rough Set Theory

  • Kimiaki Shirahama
  • Yuta Matsuoka
  • Kuniaki Uehara
Conference paper

DOI: 10.1007/978-3-642-17832-0_10

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6523)
Cite this paper as:
Shirahama K., Matsuoka Y., Uehara K. (2011) Video Event Retrieval from a Small Number of Examples Using Rough Set Theory. In: Lee KT., Tsai WH., Liao HY.M., Chen T., Hsieh JW., Tseng CC. (eds) Advances in Multimedia Modeling. MMM 2011. Lecture Notes in Computer Science, vol 6523. Springer, Berlin, Heidelberg

Abstract

In this paper, we develop an example-based event retrieval method which constructs a model for retrieving events of interest in a video archive, by using examples provided by a user. But, this is challenging because shots of an event are characterized by significantly different features, due to camera techniques, settings and so on. That is, the video archive contains a large variety of shots of the event, while the user can only provide a small number of examples. Considering this, we use “rough set theory” to capture various characteristics of the event. Specifically, by using rough set theory, we can extract classification rules which can correctly identify different subsets of positive examples. Furthermore, in order to extract a larger variety of classification rules, we incorporate “bagging” and “random subspace method” into rough set theory. Here, we define indiscernibility relations among examples based on outputs of classifiers, built on different subsets of examples and different subsets of feature dimensions. Experimental results on TRECVID 2009 video data validate the effectiveness of our example-based event retrieval method.

Keywords

Example-based event retrieval Rough set theory Bagging Random subspace method high-dimensional small sample size problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kimiaki Shirahama
    • 1
  • Yuta Matsuoka
    • 2
  • Kuniaki Uehara
    • 2
  1. 1.Graduate School of EconomicsKobe UniversityKobeJapan
  2. 2.Graduate School of System InformaticsKobe UniversityKobeJapan

Personalised recommendations