An Information Foraging Theory Based User Study of an Adaptive User Interaction Framework for Content-Based Image Retrieval

  • Haiming Liu
  • Paul Mulholland
  • Dawei Song
  • Victoria Uren
  • Stefan Rüger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6524)


This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR.


Information Foraging Theory User interaction Four-factor user interaction model uInteract content-based image retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campbell, I.: Interactive evaluation of the ostensive model using a new test collection of images with multiple relevance assessments. Journal of Information Retrieval 2(1) (2000)Google Scholar
  2. 2.
    Järvelin, K.: Explaining user performance in information retrieval: Challenges to IR evaluation. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 289–296. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Liu, H., Uren, V., Song, D., Rüger, S.: A four-factor user interaction model for content-based image retrieval. In: Proceeding of the 2nd International Conference on the Theory of Information Retrieval, ICTIR (2009)Google Scholar
  4. 4.
    Liu, H., Zagorac, S., Uren, V., Song, D., Rüger, S.: Enabling effective user interactions in content-based image retrieval. In: Proceedings of the Fifth Asia Information Retrieval Symposium, AIRS (2009)Google Scholar
  5. 5.
    Pirolli, P.: Information Foraging Theory Adaptive Interaction with Information. Oxford University Press, Inc., Oxford (2007)CrossRefGoogle Scholar
  6. 6.
    Pirolli, P., Card, S.K.: Information foraging. Psychological Review 106, 643–675 (1999)CrossRefGoogle Scholar
  7. 7.
    Ruthven, I., Lalmas, M., van Rijsbergen, K.: Incorporating user search behaviour into relevance feedback. Journal of the American Society for Information Science and Technology 54(6), 528–548 (2003)CrossRefGoogle Scholar
  8. 8.
    Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Information Processing Management 34(5), 599–621 (1998)CrossRefGoogle Scholar
  9. 9.
    Urban, J., Jose, J.M.: Evaluating a workspace’s usefulness for image retrieval. Multimedia Systems Journal 12(4-5), 355–373 (2006)CrossRefGoogle Scholar
  10. 10.
    Urban, J., Jose, J.M., van Rijsbergen, K.: An adaptive technique for content-based image retrieval. Multimedia Tools and Applications 31, 1–28 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Haiming Liu
    • 1
  • Paul Mulholland
    • 1
  • Dawei Song
    • 2
  • Victoria Uren
    • 3
  • Stefan Rüger
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK
  2. 2.School of ComputingThe Robert Gordon UniversityAberdeenUK
  3. 3.Department of Computer ScienceUniversity of SheffieldSheffieldUK

Personalised recommendations