This chapter discusses the applications and solutions of emerging Virtual Reality (VR) and video games technologies in the healthcare sector, e.g. physical therapy for motor rehabilitation, exposure therapy for psychological phobias, and pain relief. Section 2 reviews state-of-the-art interactive devices used in current VR systems and high-end games such as sensor-based and camera-based tracking devices, data gloves, and haptic force feedback devices. Section 3 investigates recent advances and key concepts in games technology, including dynamic simulation, flow theory, adaptive games, and their possible implementation in serious games for healthcare. Various serious games are described in this section: some were designed and developed for specific healthcare purposes, e.g. BreakAway (2009)’s Free Dive, HopeLab (2006)’s Re-Mission, and Ma et al. (2007)’s VR game series, others were utilising off-the-shelf games such as Nintendo Wii sports for physiotherapy. A couple of experiments of using VR systems and games for stroke rehabilitation are highlighted in section 4 as examples to showcase the benefits and impacts of these technologies to conventional clinic practice. Finally, section 5 points some future directions of applying emerging games technologies in healthcare, such as augmented reality, Wii-mote motion control system, and even full body motion capture and controller free games technology demonstrated recently on E3 2009 which have great potentials to treat motor disorders, combat obesity, and other healthcare applications.


Virtual Reality video games technology serious games in healthcare adaptive games flow experience games-based therapy dynamic simulation motor rehabilitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aukstakalnis, S., Blatner, D.: Silicon Mirage - The Art and Science of Virtual Reality. Peachpit Press, Berkeley (1992)Google Scholar
  2. 2.
    Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 415–438. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Cates, C.: Virtual Reality Simulation in Carotid Stenting: a New Paradigm for Procedural Training. Nature Clinical Practice Cardiovasculaer Medine 4(4) (2007)Google Scholar
  4. 4.
    Charles, D., McNeill, M., McAlister, M., Black, M., Moore, A., Stringer, K., Kücklich, J., Kerr, A.: Player-centred game design: player modelling and adaptive digital games. In: Proceedings of the Second International Digital Games Research Conference, DIGRA 2005, Vancouver, Canada, June 2005, pp. 285–298 (2005)Google Scholar
  5. 5.
    Crossbie, J.H., Lennon, S., Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library Metadata Architecture. Int. J. Digit. Libr. 1, 108–121 (1997)CrossRefGoogle Scholar
  6. 6.
    Crosbie, J.H., Lennon, S., Basford, J.R.: Virtual reality in stroke rehabilitation: still more virtual than real. Disability and Rehabilitation 29, 1139–1146 (2007)CrossRefGoogle Scholar
  7. 7.
    Csikszentmihalyi, M., Csikszentmihalyi, I.S. (eds.): Optimal experience: Psychological studies of flow in consciousness. Cambridge University Press, New York (1988)Google Scholar
  8. 8.
    CyberGlove devices: (site visited on January 6, 2010)
  9. 9.
    Deutsch, J.E., Borbely, M., Filler, J., Huhn, K., Guarrera-Bowlby, P.: Use of a Low-Cost, Commercially Available Gaming Console (Wii) for Rehabilitation of an Adolescent With Cerebral Palsy. Physical Therapy 88(10), 1196–1207 (2008), doi:10.2522/ptj.20080062CrossRefGoogle Scholar
  10. 10.
    Emergent Game Technologies: Free Dive—Pediatric Pain Management (2009), (site visited on January 7, 2010)
  11. 11.
    Gershon, J., Zimand, E., Pickering, M., Rothbaum, B.O., Hodges, L.: A pilot and feasibility study of virtual reality as a distraction for children with cancer. Journal of Amer Academy of Child & Adolescent Psychiatry 43(10), 1243–1249 (2004)CrossRefGoogle Scholar
  12. 12.
    Gregg, L., Tarrier, N.: Virtual reality in mental health: A review of the literature. Social Psychiatry and Psychiatric Epidemiology 42(5), 343–354 (2007)CrossRefGoogle Scholar
  13. 13.
    Gregory, E.: Understanding Video Gaming’s Engagement: Flow and Its Application to Interactive Media. Media Psychology Review 1(1) (2008), (site visited on January 9, 2010)
  14. 14.
    HopeLab: Re-Mission (2006), (site visited on January 7, 2010)
  15. 15.
    Hsu, J.: Active Interaction. Encyclopedia of Virtual Environments (1993),
  16. 16.
    Huang, H., Wolf, S.L., He, J.: Recent developments in biofeedback for neuromotor rehabilitation. Journal of Neuro Engineering and Rehabilitation 3, 11 (2006), doi:10.1186/1743-0003-3-11CrossRefGoogle Scholar
  17. 17.
    Jain, L.C.: Soft Computing Techniques in Knowledge-based Intelligent Systems. Springer, New York (1997)zbMATHGoogle Scholar
  18. 18.
    Kato, P.M., Cole, S.W., Bradlyn, A.S., Pollock, B.H.: A Video Game Improves Behavioral Outcomes in Adolescents and Young Adults With Cancer: A Randomized Trial. In: PEDIATRICS, vol. 122(2), pp. 305–317 (August 2008), doi:10.1542/peds.2007-3134Google Scholar
  19. 19.
    Kerrigan, D.J., Chen, H., Wiederhold, M.D., Gamberini, L., Wiederhold, B.K.: Evaluation of the Nintendo Wii for Physical Exercise and Rehabilitation. Cyber Therapy 13 (June 23-25, 2008)Google Scholar
  20. 20.
    Khandaker, M.: Designing affective video games to support the social-emotional development of teenagers with autism spectrum disorders. Studies in Health Technology and Informatics 144, 37–39 (2009)Google Scholar
  21. 21.
    Kilanowski, C.K., Consalvi, A.R., Epstein, L.H.: Validation of an electronic pedometer for measurement of physical activity in children. Pediatric Exercise Science 11(1), 63–68 (1999)Google Scholar
  22. 22.
    Laycock, S.D., Day, A.M.: Recent Developments and Applications of Haptic devices. Computer Graphics Forum 22(2), 117–132 (2003)CrossRefGoogle Scholar
  23. 23.
    Minhua, M., Bechkoum, K.: Serious Games for Movement Therapy after Stroke. In: Yeung, D.S., Poo, A.N., Ang Jr, M.H. (eds.) IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC 2008), Singapore, October 12-15, pp. 1872–1877 (2008)Google Scholar
  24. 24.
    Ma, M., McNeill, M., Charles, D., McDonough, S., Crosbie, J., Oliver, L., McGoldrick, C.: Adaptive Virtual Reality Games for Rehabilitation of Motor Disorders. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 681–690. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Mulder, A.G.E.: Human movement tracking technology, Technical Report 94-1, Simon Fraser University (1994)Google Scholar
  26. 26.
    Rose, F.D., Johnson, D.A., Attree, E.A., Leadbetter, A.G., Andrews, T.K.: Virtual reality in neurological rehabilitation. Br. J. Ther. Rehab. 3, 223–228 (1996)Google Scholar
  27. 27.
    Rose, F.D., Attree, E.A., Brooks, B.M., Johnson, D.A.: Virtual Environments in Brain Damage Rehabilitation: A Rationale from Basic Neuroscience. In: Riva, G., Wiederhold, B.K., Molinari, E. (eds.) Virtual Environments in Clinical Psychology and Neuroscience: Methods and Techniques in Advanced Patient-Therapist Interaction. Technology and Informatics, vol. 58, IOS Press, Amsterdam (1998)Google Scholar
  28. 28.
    Sharar, S.R., Miller, W., Teeley, A., Soltani, M., Hoffman, H.G., Jensen, M.P., Patterson, D.R.: Applications of virtual reality for pain management in burn-injured patients. Expert Rev. Neurother 8(11), 1667–1674 (2008), doi:10.1586/14737175.8.11.1667.CrossRefGoogle Scholar
  29. 29.
    Smart Consortium (2007), (site visited on January 10, 2010)
  30. 30.
    Srinivasan, M.A., Basdogan, C.: Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges. Computers and Graphics 21(4), 393–404 (1997)CrossRefGoogle Scholar
  31. 31.
    Steinberg, A.D., Bashook, P.G., Drummond, J., Ashrafi, S., Zefran, M.: Assessment of Faculty Perception of Content Validity of PerioSim©, a Haptic-3D Virtual Reality Dental Training Simulator. Journal of Dent Education 71(12), 1574–1582 (2007)Google Scholar
  32. 32.
    Sun, Z., Zheng, H.: Effect of Suprarenal Stent Struts on the Renal Artery with Ostial Calcification Observed on CT Virtual Intravascular Endoscopy. Eur. J. Vasc. Endovasc. Surg. 28, 534–542 (2004)CrossRefGoogle Scholar
  33. 33.
    van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and Developments. LNCS, vol. 1000. Springer, Heidelberg (1995)zbMATHGoogle Scholar
  34. 34.
    Viau, A., Feldman, A., McFadyen, B., Levin, M.: Reaching in Reality and Virtual Reality: a Comparison of Movement Kinematics in Healthy Subjects and in Adults with Hemiparesis. Journal of NeuroEngineering and Rehabilitation 1(11) (2004)Google Scholar
  35. 35.
    Wilson, P.N., Foreman, N., Tlauka, M.: Transfer of sptial information from a virtual to real enviroment. Human factors 39, 526–531 (1997)CrossRefGoogle Scholar
  36. 36.
    Zheng, H., Black, N.D., Harris, N.: Position-sensing technologies for movement analysis in stroke rehabilitation. Med. Biol. Eng. Comput. 43, 413–420 (2005)CrossRefGoogle Scholar
  37. 37.
    Zheng, H., Davies, R., Zhou, H., Hammerton, J., Mawson, S.J., Ware, P.M., Black, N.D., Eccleston, C., Hu, H., Stone, T., Mountain, G.A., Harris, N.D.: SMART project: Application of emerging information and communication technology to home-based rehabilitation for stroke patients. International Journal on Disability and Human Development Special. Issue on Advances in Virtual Reality Therapy and Rehabilitation 5(3), 271–276 (2006)Google Scholar
  38. 38.
    Zheng, H., Davies, R.J., Stone, T., Wilson, S., et al.: SMART Rehabilitation: Implementation of ICT Platform to Support Home-Based Stroke Rehabilitation. HCI (5), 831–840 (2007)Google Scholar
  39. 39.
    Zhou, H., Hu, H.: A survey - human movement tracking and a research proposal, Technical Report (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Minhua Ma
    • 1
  • Huiru Zheng
    • 2
  1. 1.Digital Design StudioThe Glasgow School of Art, The Hub, Pacific QuayGlasgowUnited Kingdom
  2. 2.Computer Science Research Institute, School of Computing and MathematicsUniversity of UlsterCo. AntrimUnited Kingdom

Personalised recommendations