Virtual Reality in Psychotherapy, Rehabilitation, and Neurological Assessment

  • Sheryl Brahnam
  • Lakhmi C. Jain
Part of the Studies in Computational Intelligence book series (SCI, volume 337)


This chapter presents a brief overview of advances in the application of virtual reality and related technologies in psychotherapy and healthcare. A summary of the chapters on virtual reality and psychotherapy, virtual reality and rehabilitation, and virtual reality in neurological assessment is presented.


Virtual Reality Augmented Reality Post Traumatic Stress Disorder Virtual World Stroke Rehabilitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCloy, R., et al.: Science, medicine, and the future: Virtual reality in surgery. British Medical Journal 323, 912–915 (2001)CrossRefGoogle Scholar
  2. 2.
    Milgram, P., et al.: Augmented Reality: A class of displays on the reality-virtuality continuum. In: Proceedings of Telemanipulator and Telepresence Technologies, pp. 2351–2334 (1994)Google Scholar
  3. 3.
    Spicer, M.A., et al.: Virtual reality surgery: Neurosurgery and the contemporary landscape. Neurosurgery 52(3), 489–498 (2003)CrossRefGoogle Scholar
  4. 4.
    Erel, E., et al.: Microsurgery simulators in virtual reality: Review. Microsurgery 23(2), 147–152 (2003)CrossRefGoogle Scholar
  5. 5.
    Cho, J.E., et al.: New technologies for reproductive medicine: laparoscopy, endoscopy, robotic surgery and gynecology: A review of the literature. Minerva Ginecologica 62(2), 137–167 (2010)Google Scholar
  6. 6.
    Kong, M., et al.: A robot-assisted orthopedic telesurgery system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 97–101 (2005)Google Scholar
  7. 7.
    Fornaro, J., et al.: An interactive surgical planning tool for acetabular fractures: Initial results. Journal of Orthopaedic Surgery and Research 5, 50 (2010)CrossRefGoogle Scholar
  8. 8.
    Sugimoto, M., et al.: Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. Journal of Hepato-Biliary-Pancreatic Sciences 17(5), 629–636 (2010)CrossRefGoogle Scholar
  9. 9.
    Liao, H., et al.: 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Transactions on Bio-Medical Engineering 57(6), 1476–1486 (2010)CrossRefGoogle Scholar
  10. 10.
    Shekhar, R., et al.: Live augmented reality: a new visualization method for laparoscopic surgery using continuous volumetric computed tomography. Surgical Endoscopy 24(8), 1976–1985 (2010)CrossRefGoogle Scholar
  11. 11.
    Mohammed, A., et al.: Virtual cystoscopy. Expert Review of Molecular Diagnostics 8(4), 449–454 (2008)CrossRefGoogle Scholar
  12. 12.
    Jones, C.M., et al.: Is virtual bronchoscopy an efficient diagnostic tool for the thoracic surgeon? The Society of Thoracic Surgeons 79, 365–374 (2005)CrossRefGoogle Scholar
  13. 13.
    Snyder, C.W., et al.: Retention of colonoscopy skills after virtual reality simulator training by independent and proctored methods. The American Surgeon 76(7), 743–746 (2010)Google Scholar
  14. 14.
    Rhienmora, P., et al.: A virtual reality simulator for teaching and evaluating dental procedures. Methods of Information in Medicine 49(4), 396–405 (2010)Google Scholar
  15. 15.
    Andreatta, P.B., et al.: Virtual reality triage training provides a viable solution for disaster-preparedness. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine 17(8), 870–876 (2010)Google Scholar
  16. 16.
    Issenberg, S.B., et al.: Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Medical Teacher 27(1), 10–28 (2005)CrossRefGoogle Scholar
  17. 17.
    Gallagher, A.G., et al.: Approval of virtual reality training for carotid stenting: what this means for procedural-based medicine. Journal of the American Medical Association 292(24), 3024–3026 (2004)CrossRefGoogle Scholar
  18. 18.
    LeBlanc, F., et al.: A comparison of human cadaver and augmented reality simulator models for straight laparoscopic colorectal skills acquisition training. Journal of the American College of Surgeons 211(2), 250–255 (2010)CrossRefGoogle Scholar
  19. 19.
    Moline, J.: Virtual reality for health care: A survey. In: Riva, G. (ed.) Virtual Reality in Neuro-psycho-physiology: Cognitive, Clinical and Methodological Issues in Asessment and Rehabilitation, pp. 3–34. IOS Press, Amsterdam (1997)Google Scholar
  20. 20.
    Riva, G.: Virtual reality as assessment tool in psychology. In: Riva, G. (ed.) Virtual Reality in Neuro-Psycho-Physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, pp. 71–80. IOS Press, Amsterdam (1997)Google Scholar
  21. 21.
    Riva, G.: Virtual reality in psychotherapy: Review. CyberPsychology & Behavior 8(3), 220–230 (2005)CrossRefGoogle Scholar
  22. 22.
    Schultheis, M.T., et al.: The application of virutal reality technology in rehabilitation. Rehabilitation Psychology 46, 296–311 (2001)CrossRefGoogle Scholar
  23. 23.
    Riva, G. (ed.): Virtual Reality in Neuro-psycho-hysiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation. Technology and Informatics. IOS Press, Amsterdam (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sheryl Brahnam
    • 1
  • Lakhmi C. Jain
    • 2
  1. 1.Computer Information SystemsMissouri State UniversitySpringfieldUSA
  2. 2.Knowledge-based EngineeringUniversity of South AustraliaSouth AustraliaAustralia

Personalised recommendations