Utilization of Lignocellulose-feeding Insects for Viable Biofuels: an Emerging and Promising Area of Entomological Science

  • Jianzhong Sun
  • Xuguo Joe Zhou


Most insects are unable to use plant cell walls as their main food sources, but some insects subsist on lignocellulosic biomass from agricultural crops to forest woody substrates as their only foods, such as in the case of termites (all seven families), wood-feeding roaches (Blattidae, Cryptoceridae), beetles (Anobiidae, Buprestidae, Cerambycidae, Scarabaeidae), wood wasps (Siricidae), leaf-shredding aquatic insects (Pteronarcidae, Limnephilidae, Tipulidae), silver fish (Lepismatidae), leaf-cutting ants (Formicidae), etc. Cellulose digestion has been demonstrated in more than 20 families representing ten distinct insect orders, e. g. Thysanura, Plecoptera, Dictyoptera, Orthoptera, Isoptera, Coleoptera, Trichoptera, Hymenoptera, Phasmida, and Diptera. The ability of these insects to feed on wood, foliage and detritus has recently stimulated extensive investigations into the mechanisms of how these insects digest the structural and recalcitrant lignocellulose in their foods. With these studies, scientists would possibly advance biofuel technologies with the discovery of novel lignocellulolytic enzymes and a better understanding of the bioconversion mechanisms that breakdown plant cell walls inside the insect’s gut. Producing monomeric sugars from cellulose or hemicellulose with high yields and low cost is far more difficult than deriving them from sugar- or starch-containing crops. This difficulty is primarily due to a lack of efficient and economic lignocellulolytic enzymes that convert rigid plant cell walls to their monomeric pentose and hexose sugar subunits. However, termites, especially wood-feeding termites (including lower and higher termites), are a unique group of lignocellulose-feeding insects exhibiting incredible wood degradation capabilities, which accomplish lignocellulose digestion using specialized gut physiology, endogenously produced digestive enzymes, and via their specialized association with prokaryotic and eukaryotic gut symbionts. It is believed that the guts of these lignocellulosefeeding insects harbor diverse symbiotic microbes and endogenous enzymes that could be used as a rich source of lignocellulases as well as functional gene resources for improving the conversion of wood or waste plant biomass to valuable biofuels. Recent studies showed that lignocellulose-feeding insects and their symbionts have not only cellulolytic or lignin decomposition activity, but also aromatic hydrocarbon degradation. Thus, as an emerged new area of entomological science, utilization of lignocellulose-feeding insects would be very valuable for viable biofuels production made from lignocellulosic biomass. Clearly, understanding the mechanisms of the biomass digestion in these insect guts could potentially shed light on efficient, low cost, lignocellulose-based biofuel production systems. This review addresses various lignocellulolytic systems, the potential values, various challenges, and opportunities that exist for investigating lignocellulose-feeding insects in biofuels production, as well as possible future research directions.


lignocellulose insect lignocellulase lignocellulolytic system biofuels bioreactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T, Bignell D E, Higashi M. Termites: evolution, sociality, symbiosis, ecology. Dordrecht/ Boston/London: Kluwer Academic Publishers, 2000.Google Scholar
  2. Abe T, Higashi M. Cellulose centered perspective on terrestrial community structure. Okos, 1991, 60: 127–133.Google Scholar
  3. Abo-Khatwa N. Termitomycetes: a new source of potent cellulases. J. King Abulaziz Univ. Sci., 1989, 1: 51–59.Google Scholar
  4. Abo-Khatwa N. Cellulase of fungus-growing termites: a new hypothesis on its origin. Experientia, 1978, 34: 559–560.Google Scholar
  5. Abraham S. Toward a more secure and cleaner energy future for America: national hydrogen energy roadmap, production, delivery, storage, conversion, applications, public education and outreach. Washington, DC: U. S. Department of Energy, 2002.Google Scholar
  6. Adams L, Boopathy R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technol., 2005, 96: 1592–1598.Google Scholar
  7. Agarwal A K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr. Energy. Combus. Sci., 2007, 33: 233–271.Google Scholar
  8. Aman R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995, 59: 143–169.Google Scholar
  9. Baeza J, Freer J. Wood and cellulosic chemistry, 2nd ed. New York: Marcel Dekker Inc, 2001.Google Scholar
  10. Bayon C. Modifications ultrastructurales des parois vegetales dans le tube digestif d’une larva xylophage Oryctes nasicornis (Coleoptera, Scarabaeidae): role des bacteries. Can. J. Zool., 1981, 59: 2020–2029.Google Scholar
  11. Bayon C. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera: Scarabaeidae). J. Insect Physiol., 1980, 26: 819–828.Google Scholar
  12. Béguin P, Aubert J P. The biological degradation of cellulose. FEMS Microbiol. Rev., 1994, 13: 25–58.PubMedGoogle Scholar
  13. Berchtold M, Chatzinotas A, Schönhuber W, et al. Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis. Arch. Microbiol., 1999, 172: 407–416.PubMedGoogle Scholar
  14. Berchtold M, König H. Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. System. Appl. Microbiol., 1996, 19: 66–73.Google Scholar
  15. Berchtold M, Breunig A, König H. Culture and phylogenetic characterization of Trichomitus trypanoides Duboscque & Grasse 1924, n. comb.: a trichomond flagellate isolated from the hindgut of the termite Reticulitermes santonensis Feytaud. J. Eukar. Microbiol., 1995, 42: 388–391.Google Scholar
  16. Bignell D E. Termites as soil engineers and soil processors. // König H. and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 183–220.Google Scholar
  17. Bignell D E. Introduction to symbiosis. // Abe T, Bignell D E and Higashi M. Termites: evolution, sociality, symbiosis, ecology. Dordrecht/Boston/ London: Kluwer Academic Publishers, 2000: 189–208.Google Scholar
  18. Bignell D E. An experimental study of cellulose and hemicellulose degradation in the alimentary canal of the American cockroach. Can. J. Zool., 1977, 55: 579–589.Google Scholar
  19. Bignell D E, Anderson J M, Crosse R. Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Micobiol. Ecol., 1991, 85: 151–160.Google Scholar
  20. Bignell D E, Oskarsson H, Anderson J M. Structure, microbial associations and function of the socalled “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. Zool. Lond., 1983, 201: 445–480.Google Scholar
  21. Bignell D E, Anderson J M. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol., 1980, 26: 183–188.Google Scholar
  22. Boytles D. Bioenergy technology-Thermodynamics and costs. New York: Willey, 1984.Google Scholar
  23. Brauman A, Kane M D, Labat M, et al. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science, 1992, 257: 1384–1386.PubMedGoogle Scholar
  24. Braumann A, Dore J, Eggleton P, et al. Molecular phylogenetic profiling of prokaryote communities in guts of termites with different feeding habits. FEMS Microbiol. Ecol., 2001, 35: 27–36.Google Scholar
  25. Breznak J A. Acetogenesis from carbon dioxide in termite guts. // Drake H L. Acetogenesis. New York: Chapman & Hal, 1994: 303–330.Google Scholar
  26. Breznak J A. Biochemical aspects of symbiosis between termites and their intestinal microbiota. // Anderson J M, Rayner A D M and Walton D W H. Invertebrate Microbial Interactions. Cambridge: Cambridge University Press. 1984: 173–203.Google Scholar
  27. Breznak J A, Switzer J M. Acetate synthesis from H2 plus CO2 by termites gut microbes. Appl. Environ. Microbiol., 1986, 52: 623–630.PubMedGoogle Scholar
  28. Breznak J A, Brune A. Role of microorganism in the digestion of lignocellulose by termites. Annu. Rev. Entomol., 1994, 39: 453–487.Google Scholar
  29. Breznak J A, Pankratz H S. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Enviorn. Microbiol., 1977, 33: 406–426.Google Scholar
  30. Brigham J W, Adney L, Himmel M. Hemicelluloses: diversity and applications. // Charles E. Wyman. Handbook on bioethanol: production and utilization (Applied Energy Technology Series). Washington DC: Taylor and Francis, 1996: 119–142.Google Scholar
  31. Brune A. Woodworker’s digest. Science, 2007, 450: 487–488.Google Scholar
  32. Brune A. Symbionts aiding digestion. Pp. 1102–11-7. In V. H. Resh and R. T. Carde [Eds.], Encyclopedia of Insects. New York: Academic Press, 2003.Google Scholar
  33. Brune A. Termite guts: the world’s smallest bioreactors. Trends Biotechnol., 1998, 16: 16–21.Google Scholar
  34. Brune A, Stingl U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. // Overmann J. Molecular Basis of Symbiosis. Berlin, Springer, 2005: 39–60.Google Scholar
  35. Brune A, Friedrich M. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbial., 2000, 3: 263–269.Google Scholar
  36. Brune A, Kühl M. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J. Insect Physiol., 1996, 42: 1121–1127.Google Scholar
  37. Brune A, Emerson D, Breznak J A. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol., 1995, 61: 2681–2687.PubMedGoogle Scholar
  38. Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res., 2009, 37(suppl_1): D233–D238.PubMedGoogle Scholar
  39. Cao Y Q, Sun J Z, Rodriguez J M, Lee K C. Hydrogen Emission by Three Wood-feeding Subterranean Termite Species (Isoptera: Rhinotermitidae): Production and Characteristics. Insect Sci., 2010, 17: 237–244.Google Scholar
  40. Carey J, Adam A. Put a termite in your tank, biobreakthroughs are promising much better ways to make ethanol. Business Week, 2006, (December 18): 132–133.Google Scholar
  41. Carlton J M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 2007, 315: 207–212.PubMedGoogle Scholar
  42. Cazemier A E, Verdoes J C, Rubsaet F A G, et al. Promicromonospora pachnodae sp. nov., a member of the (hemi) cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek, 2003, 83: 135–148.PubMedGoogle Scholar
  43. Cazemier A E, Hackstein J H P, Op den Camp H VJ M, et al. Bacteria in the intestinal tract of different species of arthropods. Microbiol. Ecol., 1997, 33: 189–197.Google Scholar
  44. Chaffron S, von Mering C. Termites in the woodwork. Genome Biol., 2007, 8: 229.1–229.4.Google Scholar
  45. Chung SY, Maeda M, Song E, et al. A gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci. Biotechnol. Biochem., 1994, 58: 2111–2113.Google Scholar
  46. Cleveland L R, Hall S R, Sanders E P, et al. The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem. Am. Acad. Arts Sci., 1934, 17: 185–342.Google Scholar
  47. Cleveland L R. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol. Bull., 1924, 46: 178–227.Google Scholar
  48. Cleveland L R. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. USA, 1923, 9: 424–428.PubMedGoogle Scholar
  49. Cook D M, Henriksen E D, Upchurch R, et al. Isolation of polymer-degrading bacteria and characterization of the hindgut bacterial community from the detritus-feeding larvae of Tipula abdominalis (Diptera: Tipulidae). Appl. Environ. Microbiol., 2007, 73: 5683–5686.PubMedGoogle Scholar
  50. Cowling E B, Merrill W. Nitrogen in wood and its role in wood deterioration. Can. J. Botany, 1966, 44: 1539–1554.Google Scholar
  51. Cullen D, Kersten P J. Enzymology and molecular biology of lignin degradation. // Brambl R and Marzulf G A. The mycota III biochemistry and molecular biology. Berlin: Springer, 2004: 249–273.Google Scholar
  52. Cruden D L, Markovetz A J. Carboxymethylcellulose decomposition by intestinal bacteria of cockroaches. Appl. Environ. Microbiol., 1979, 38: 369–372.PubMedGoogle Scholar
  53. Czolij R, Slaytor M, O’Brien RW. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitidae). Appl. Enviorn. Microbiol., 1985, 49: 1226–1236.Google Scholar
  54. Darlington J P E C, Zimmerman P R, Greenberg J, et al. Production of metabolic gases by nests of the termite Macrotermes jeanneli in Kenya. J. Trop. Ecol., 1997, 13: 491–510.Google Scholar
  55. Deevong P, Hattori S, Yamada A, et al. Isolation and detection of methanogens from the gut of higher termites. Microbes Environ., 2004, 19: 221–226.Google Scholar
  56. Demain A. Biosolution to the energy problem. J. Ind. Microbiol. Biotechnology, 2009, 36: 319–332.Google Scholar
  57. Ding S Y, Himmel M E. The maize primary cell wall microfibril: A new model derived from direct visualization. J. agric. Food Chem., 2006, 54: 597–606.PubMedGoogle Scholar
  58. Douglas A E. The microbial dimension in insect nutritional ecology. Funct. Ecol., 2009, 23: 38–47.Google Scholar
  59. Ebert A, Brune A. Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol., 1997, 63: 4039–4046.PubMedGoogle Scholar
  60. Feyereisen R. Insect cytochrome P450. // Gilbert L I, Iatrou K and Gill S S. Comprehensive Molecular Insect Science [Vol. 4]: Biochemistry and Molecular Biology. Amsterdam: Elsevier, 2005: 1–77.Google Scholar
  61. Emily S. 2007. Why termite guts could bring better biofuels? Technol. Rev., Website publication (Jan. 17, 2007) at http://www.technologyreview. com/Biotech/18073/Google Scholar
  62. Fisher M D M, Brewste C. Diversity of gut bacteria of Reticulitermes flavipes as examined by 16S rRNA gens sequencing and amplified rDNA restriction analysis. Curr. Microbiol., 2007, 55: 254–259.PubMedGoogle Scholar
  63. Gaut I P C. Identity of the fungal symbiont of Sirex noctilio. Aust. J. Biol. Sci., 1969, 22: 905–914.Google Scholar
  64. Geib S M, Filley T R, Hatcher P G, et al. Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. USA, 2008, 105:12932–12937.PubMedGoogle Scholar
  65. Gidh A, Talreja D, Vinzant T B, et al. Detailed analysis of modification in lignin after treatment with cultures screened for lignin depolymerizing agents. Appl. Biochem. And Biotechnol., 2006, 129–132: 829–132.Google Scholar
  66. Glazer A N, Nikaido H. Microbial biotechnology, fundamentals of applied microbiology. 2nd Ed. New York: Cambridge University Press, 2007.Google Scholar
  67. Gomez L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytologist, 2008, 178: 473–485.PubMedGoogle Scholar
  68. Griffiths B S, Cheshire M V. Digestion and excretion of nitrogen and carbohydrate by the cranefly larva Tipula paludosa (Diptera: Tipulidae). Insect Biochem., 1987, 17: 277–282.Google Scholar
  69. Hacksterin J H P, Stumm C K. Methane production in terrestrial arthropods. Proc. Natl. Acad. Sci. USA, 1994, 91: 5441–5445.Google Scholar
  70. Hallenbeck P C, Benemann J. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrogen Energy, 2002, 27: 1185–1193.Google Scholar
  71. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 2004, 68: 669–685.PubMedGoogle Scholar
  72. Hara K, Shinzato N, Oshima T, et al. Endosymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulitermes speratus detected by fluorescent in situ hybridization. Microbes. Environ., 2004, 19: 120–127.Google Scholar
  73. Harazono K, Yamashita N, Shinzato N, et al. Isolation and characterization of aromaticsdegrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci. Biotechnol. Biochem., 2003, 67: 889–892.PubMedGoogle Scholar
  74. Higuchi T. Lignin biochemistry: Biosynthesis and biodegradation. Wood Sci. Technol., 1990, 24: 23–63.Google Scholar
  75. Hinze B, Crailsheim K, Leuthold R H. Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc., 2002, 49: 31–37.Google Scholar
  76. Hoffmann P. Tomorrow’s energy, hydrogen, fuel cells, and the prospects for a cleaner planet. Cambridge: The MIT Press, 2001.Google Scholar
  77. Hopkins D W, Chudek J A, Bignell D E, et al. Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil and litter-dwelling insects. Biodegradation, 1998, 9: 423–431.PubMedGoogle Scholar
  78. Howard R L, Abotsi E, Jansen Van Rensburg E L, et al. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol., 2003, 2: 602–619.Google Scholar
  79. Husseneder C, Wise B R, Higashiguchi D T. Microbial diversity in the termite gut: A complementary approach combining culture and culture-independent techniques. // Chow-Yong Lee and William H. Robinson. Proceedings of the 5th International Conference on Urban Pests. Malaysia: P&Y Design Network Penang, 2005: 189–195.Google Scholar
  80. Hyodo F, Tayasu I, Inoue T, et al. Differential role of symbiotic in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol., 2003, 17(2): 186–193.Google Scholar
  81. Hyodo F, Inoue T, Azuma J I, et al. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera: Macrotermitinae). Soil Biol. Biochem., 2000, 32: 653–658.Google Scholar
  82. Inoue J I, Saita K, Kudo T, et al. Hydrogen production by termite gut protists: characterization of iron hydrogenases of parabasalian symbionts of the termite Coptotermes formosanus. Eukar. Cell, 2007, 6: 1925–1932.Google Scholar
  83. Inoue T, Moriya S, Ohkuma M, et al. Molecular cloning and characterization of a cellulose gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene, 2005, 349: 67–75.PubMedGoogle Scholar
  84. Itakura S, Tanaka H, Enoki A. Distribution of cellulase, glucose and related substances in the body of Coptotermes formosanus. Material und Organimen, 1997, 31: 17–29.Google Scholar
  85. Itakura S, Ueshima K, Tanaka H, et al. Degradation of wood components by subterranean termite, Coptotermes formosanus Shiraki. Mokuzai gakkaishi, 1995, 41: 580–586.Google Scholar
  86. Jorgensen H, Kristensen J B, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod. Bioref., 2007, 1: 119–134.Google Scholar
  87. Katsumata K S, Jin Z, Hori K, et al. Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J. Wood Sci., 2007, 53: 419–426.Google Scholar
  88. Kawaguchi S, Yoshimura T, Aoyagi H, et al. Energy gas production from wood biomass by termites. // Proceedings of XV International Conference Union for the study of Social Insect (IUSSI), Washington DC. 2006: 205–206.Google Scholar
  89. Kendrick B. Fungal symbioses and evolutionary innovations. // Margulis L and Fester R. Symbiosis as source of evolutionary Innovation. Cambridge: MIT Press, 1991: 249–261.Google Scholar
  90. Keya S O, Mureria N K, Arshad M A. Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. J. arid. Envion., 1982, 5: 353–359.Google Scholar
  91. Kirk T K. Enzymatic “combustion”: the microbial degradation of lignin. Ann. Rev. Microbiol., 1987, 41: 465–501.Google Scholar
  92. Kiuchi I, Moriya S, Kudo T. Two different size-distributions of engulfment-related vesicles among symbiotic protists of the lower termite, Reticulitermes speratus. Microbes. Environ., 2004, 19: 211–214.Google Scholar
  93. König H, Frohlich J, Hertel H. Diversity and lignocellulolytic activities of cultured microorganisms. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 271–301.Google Scholar
  94. Kosono S, Maeda M, Fuji F, et al. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol., 1997, 63: 3282–3285.PubMedGoogle Scholar
  95. Kqczkowski J. Structure, function and metabolism of plant cell wall. Acta Phsiol. Plantarium., 2003, 25: 287–305.Google Scholar
  96. Krishna K. Taxonomy, physiology, and distribution of termites. // Krishna K and Weesner F M. Biology of termites, Vol 1, New York: Academic Press, 1970: 127–152.Google Scholar
  97. Kuhnigk T, könig H. Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J. Basic Microbiol., 1997, 37: 205–211.PubMedGoogle Scholar
  98. Kuhnigk T, Borst E M, Ritter A. Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst. Appl. Microbiol., 1994, 17: 76–85.Google Scholar
  99. Kukor J J, Cowan D P, Martin M M. The role of ingested fungal enzymes in cellulose digestion in larvae of cerambycid beetles. Physiol. Zool., 1988, 61: 364–371.Google Scholar
  100. Kukor J J, Martin M M. Cellulose digestion in Monochamus marmorator Kby. (Coleoptera: Cerambycidae): the role of acquired fungal enzymes. J. Chem. Ecol., 1986, 12: 1057–1070.Google Scholar
  101. Kukor J J, Martin M M. Acquisition of digestive enzymes by siricid woodwasps from their fungal symbiont. Science, 1983, 220: 1161–1163.PubMedGoogle Scholar
  102. Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 2009, 48: 3713–3729.Google Scholar
  103. Kumari R, Sachdev M, Prasad R, Garg A P, et al. Microbiology of termite hill (mound) and soil. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 351–372.Google Scholar
  104. Kyou K, Watanabe T, Yoshimura T, Takahashi M. Lignin modification by termite and its symbiotic protozoa. Wood Research, 1996, 83: 50–54.Google Scholar
  105. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623–1627.PubMedGoogle Scholar
  106. Lange J P. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels. Bioprod. Bioref., 2007, 1: 39–48.Google Scholar
  107. Leadbetter J R, Schmidt T M, Graber J R, et al. Acetogenesis from H2 plus CO2 by spriochetes from termite guts. Science, 1999, 283: 686–689.PubMedGoogle Scholar
  108. Lewis N G, Sarkanen S. Lignin and lignin biosynthesis. In ACS symposium series 697. ACS, Washington DC, 1998: 436.Google Scholar
  109. Lewis N G, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1990, 41: 455–496.PubMedGoogle Scholar
  110. Li L, Fröhlich J, König H. Cellulose digestion in the termite gut. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 221–241.Google Scholar
  111. Lo N, Tokuda G, Watanabe H, et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr. Biol., 2000, 10: 801–804.PubMedGoogle Scholar
  112. Lo N, Watanabe H, Sugimura M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc. Biol. Sci., 2003, 270(suppl 1): S69–S72.PubMedGoogle Scholar
  113. Lynd L R, Weimer P J, van. Zyl WH, Pretorius I S. Microbial cellulose utilization: fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 2002, 66: 507–577.Google Scholar
  114. Maeda M, Chung S Y, Song E, Kudo T. Multiple genes encoding 2, 3-dihydroxybiphenyl 1,2-dioxygenase in the Grampositive polychlorinated biphenyl-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite ecosystem. Appl. Environ. Microbiol., 1995, 61: 549–555.PubMedGoogle Scholar
  115. Malherbe S, Cloete T E. Lignocellulose biodegradation: fundamentals and applications: a review. Environ. Sci. Biotechnol., 2003, 1:105–114.Google Scholar
  116. Martin M M. The Evolution of Insect-Fungus Associations: From Contact to Stable Symbiosis. Amer. Zool., 1992, 32: 593–605.Google Scholar
  117. Martin M M. The evolution of cellulose digestion in insects. Phil. Trans. R. Soc. Lond. B, 1991, 333: 281–288.Google Scholar
  118. Martin M M. Invertebrate-microbial interactions: Ingested fungal enzymes in arthropod biology. Ithaca and London: Cornell University Press, 1987.Google Scholar
  119. Martin M M. Cellulose digestion in insects. Comp. Biochem. Physiol., 1983, 75A: 313–324.Google Scholar
  120. Martin M M, Martin J S. Cellulose digestion in the mid-gut of the fungus-growing termite Macrotermes natalensis: the role of the acquired digestive enzymes. Science, 1977, 199: 1453–1455.Google Scholar
  121. Matsui T, Tokuda G, Shinzato N. Termites as functional gene resources. Rec. Pate. Biotechnol., 2009, 3: 10–18.Google Scholar
  122. Matsumura F. Toxicology of Insecticides. New York: Plenum Press, 1986.Google Scholar
  123. Mcmillan J. Bioethanol production: status and prospects. Renew. Energy, 1997, 10: 295–302.Google Scholar
  124. Merino S, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Engin./Biotechnol., 2007, 108: 95–120.Google Scholar
  125. Minic Z. Physiological roles of plant glycoside hydrolases. Planta, 2008, 227: 723–740.PubMedGoogle Scholar
  126. Nakashima K, Watanabe H, Saitoh H, et al. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanusShiraki. Insect Biochem. Mol. Bio., 2002a, 32: 777–784.Google Scholar
  127. Nakashima K, Watanabe H, Azuma J I. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. CMLS, Cell. Mol. Life Sci., 2002b, 59: 1554–1560.Google Scholar
  128. Nakashima K, Azuma J I. Distribution and properties of endo-β-1, 4-glucanase from a lower termite, Coptotermes formosanus (Shiraki). Biosci. Biochem., 2000, 64: 1500–1506.Google Scholar
  129. Nelson K. Metagenomics as a tool to study biodiversity. // Zengler K. Accessing uncultivated microorganisms. Herndon: ASM Press, 2008: 153–169.Google Scholar
  130. Ni J, Takehara M, Miyazawa M, et al. Random exchanges of non-consered amino acid residues among four parental termite cellulases by family shuffling improved thermostability. Protein Engineer. Design Select., 2007a, 20: 535–542.Google Scholar
  131. Ni J, Taokuda G, Takehara M, et al. Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Appl. Entomol. Zool., 2007b, 42: 457–463.Google Scholar
  132. Ni J, Takehara M, Watanabe H. Heterologous overexpression of a mutant termite cellulase gene in Escherochia coli by DNA shuffling of four orthologous parental cDNAs. Biosci. Biotechnol. Biochem., 2005, 69: 1711–1720.PubMedGoogle Scholar
  133. Noda S, Iida T, Kitade O, et al. Endosymbiotic Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the termite, Coptotermes formosanus. Appl. Enviorn. Microbiol., 2005, 71: 8811–8817.Google Scholar
  134. Noirot C, Noirot-Timothée C. The digestive system. // Krishna K and Weesner F M. Biology of termites. Vol. I, New York: Academic Press, 1969: 49–88.Google Scholar
  135. O’Brien G W, Veivers P C, McEwen S E, et al. The origin and distribution of cellulase in the termites, Nasutitermes exitisus and Coptotermes lacteus. Insect Biochem., 1979, 9: 619–625.Google Scholar
  136. Odelson D A, Breznak J A. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoa from termites. Appl. Environ. Microbiol., 1985, 49: 614–621.PubMedGoogle Scholar
  137. Ohkuma M. Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends in Microbiol., 2008, 16: 345–352.Google Scholar
  138. Ohkuma M. Termite symbiotic systems: efficient bio-recycling of cellulose. Appl. Microbiol. Biotechnol., 2003, 61: 1–9.PubMedGoogle Scholar
  139. Ohkuma M, Maeda Y, Johjima T, et al. Lignin degradation and roles of white rot fungi: study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Riken Rev., 2001, 42: 39–42.Google Scholar
  140. Ohkuma M, Noda S, Kudo T. Phylogeny of symbiotic methanogens in diverse termites. FEMS Microbiol. Lett., 1999, 171: 147–153.PubMedGoogle Scholar
  141. Otero J M, Panagiotou G, Olsson L. Fueling industrial biotechnology growth with bioethanol. Adv. Biochem. Engin./Biotechnol., 2007, 108: 1–40.Google Scholar
  142. Pan C, Zhou Y, Deng T, Mo J. Activities of ligninases in Odontotermes formosanus (Isoptera: Termitidae) and its symbiotic fungus. Sociobiology, 2009, 53: 177–187.Google Scholar
  143. Pasti M, Belli M L. Cellulolytic activity of Actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol. Lett., 1985, 26: 107–112.Google Scholar
  144. Paul J, Varma A K. Hydrolytic enzymes production in Micrococcus roseus growing on different cellulosic substrate. Lett. Apl. Microbiol., 1993, 16: 167–169.Google Scholar
  145. Paul J, Varma A K. Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Curr. Sci., 1992, 64: 262–266.Google Scholar
  146. Paul J, Varma A K. Influence of sugars on endoglucanase and β-xylanase of a Bacillus strain. Biotechnol. Lett., 1990, 12: 61–64.Google Scholar
  147. Paul J, Sarkar A, Varma A. In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Curr. Sci., 1986, 55: 710–714.Google Scholar
  148. Paul J, Sarkar A, Varma A. Cellulose digesting bacteria from live termites mound soils. Curr. Sci., 1985, 54: 1098–1101.Google Scholar
  149. Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 2008, 54: 559–568PubMedGoogle Scholar
  150. Pester M, Brune A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J., 2007, 1:551–565.PubMedGoogle Scholar
  151. Pester M. Hydrogen metabolism in the hindgut of lower termites. Ph.D. dissertation. Marburg: Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 2006.Google Scholar
  152. Poinar G O Jr. Description of an early Cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasites and Vectors, 2009, 2(12) Doi: 10.1186/1756-3305-2-12Google Scholar
  153. Prillinger H, Messner R, Konig H, et al. Yeast associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco-and basidiomycetes. System. Appl. Microbiol., 1996, 19: 265–283.Google Scholar
  154. Prins R A, Kreulen D A. Comparative aspects of plant cell wall digestion in insects. Anim. Feed Sci. Technol., 1991, 32: 101–118.Google Scholar
  155. Rabinovich M L, Melnik M S, Bolobova A V. Microbial cellulases: a review. Appl. Biochem. Microbiol., 2002, 38: 305–321.Google Scholar
  156. Radek R. Flagellates, Bacteria, and fungi associated with termites: diversity and function in nutrition-review. Ecotropica, 1999, 5: 183–196.Google Scholar
  157. Radek R, Hausmann K, Breuning A. Ectobiotic and endobiotic bacteria associated with the termite flagellate Joenia annectens. Acta. Protozoologia, 1992, 31: 93–107.Google Scholar
  158. Ragauskas A, Nagy M, Kim D H, et al. From wood to fuelsIntegrating biofuels and pulp production. Ind. Biotechnol., 2006a, 2: 55–66.Google Scholar
  159. Ragauskas A, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006b, 311: 484–489.PubMedGoogle Scholar
  160. Reid I D. Solid-state fermentation for biological delignification. Enzym. Microbiol. Technol., 1989, 11: 786–803.Google Scholar
  161. Richmond P A. Occurrence and functions of native cellulose. // Haigler C H and Weimer P J. Biosynthesis and biodegradation of cellulose. New York: Marcel Dekker Inc., 1991: 5–23.Google Scholar
  162. Rouland M M. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomycetes sp. Comp. Biochem. Physiol., 1995, 112B: 629–288.Google Scholar
  163. Rouland-Lefèvre C, Inoue T, Johjima T. Termittomyces/Termite interactions. // Konig H and Varma A. Intestinal Microorganisms of termites and other invertebrates, Berlin: Springer, 2006: 335–350.Google Scholar
  164. Rouland-Lefèvre C. Symbiosis with fungi. // Abe T, Bignell D and Higashi M. Termites: evolution, sociality, symbiosis, ecology. London: Kluwer Academic Publishers, 2000: 289–306.Google Scholar
  165. Rouland C, Civas A, Renoux J, et al. Synergistic activity of the enzymes involved in cellulose degradation, purified from Macrotermes mulleri (Termitidae: Macrotermitinae) and its symbiotic fungus Termitomycetes sp. Comp. Biochem. Physiol., 1988, 91B: 459–465.Google Scholar
  166. Saha B C. Hemicellulose conversion. J. Indust. Microbiol. Biotechnol., 2003, 30: 279–291.Google Scholar
  167. Sarkar A. Isolation and characterization of thermophilic, alkaliphilic, cellulose-degrading Bacillus thermoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiol. J., 1991, 9: 225–232.Google Scholar
  168. Scharf M E, Tartar A. Termite Digestomes as sources for novel lignocelluloses. Biofuels Bioprod. Bioref., 2008, 2: 540–552.Google Scholar
  169. Scharf M E, Wu-Scharf D, Zhou X, et al. Gene expression profiles among immature and adult reproductive castes of the Reticulitermes flavipes. Insect Mol. Biol., 2005, 14: 31–34.PubMedGoogle Scholar
  170. Schäfer A, Konrad R, Kämpfer P, et al. Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol., 1996, 80: 471–478.PubMedGoogle Scholar
  171. Schmitt-Wagner D, Brune A. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl. Environ. Microbiol., 1999, 65: 4490–4496.PubMedGoogle Scholar
  172. Schubert C. Can biofuels finally take center stage? Nat. Biotecnol., 2006, 24: 777–784.Google Scholar
  173. Shallom D, Shoham Y. Microbial hemicellulases. Curr. Opin. Microbiol., 2003, 6: 219–228.PubMedGoogle Scholar
  174. Sinsabaugh R L, Linkins A E, Benfield E F. Cellulose digestion and assimilation by three leaf shredding aquatic insects. Ecology, 1985, 66: 1464–1471.Google Scholar
  175. Slaytor M. Energy metabolism in the termite and its gut microbiota. // Konig H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2006: 307–332.Google Scholar
  176. Slaytor M, Veivers P C, Lo N. Aerobic and anaerobic metabolism in the higher termite Nasutitermes walker (Hill). Insect Biochem. Mol. Biol., 1997, 27: 291–303.Google Scholar
  177. Spradbery J P. The oviposition biology of siricid woodwasps in Europe. Ecol. Entomol., 1977, 2: 225–230.Google Scholar
  178. Stillwell M A. Woodwasps (Siricidae) in conifer and the associated fungus stereum chailletii in eastern Canada. For. Sci., 1966, 12: 121–128.Google Scholar
  179. Stillwell M A. The fungus associated with woodwasp occurring in beech in New Brunswick. Can. J. Bot., 1964, 42: 495–496.Google Scholar
  180. Su N Y, Scheffrahn R H. Termites as pests of buildings, // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates, Berlin: Springer, 2000: 437–453.Google Scholar
  181. Su N Y, Scheffrahn R H. A review of subterranean termite control practices and prospects for integrated management programs. Integr. Pest Management Rev., 1998, 3: 1–13.Google Scholar
  182. Sugimoto A, Bignell D E, MacDonald J A. Global impact of termites on the carbon cycle and atmospheric trace gasses. // König H and Varma A. Intestinal Microorganisms of termites and other invertebrates. Berlin: Springer, 2000: 409–435.Google Scholar
  183. Sugimoto A, Inoue T, Tayasu I, et al. Methane and hydrogen production in a termite-symbiont system. Ecol. Res., 1998, 13: 241–257.Google Scholar
  184. Suh S O, Nguyen N H, Blackwell M. Nine new Candida species near C. membranifaciens isolated from insects. Mycol. Res., 2005, 109: 1045–1056.PubMedGoogle Scholar
  185. Suh S O, White MM, Nguyen N H, et al. The status and characterization of Enteroramus dimorphus: a xylosefermenting yeast attached to the gut of beetles. Mycologia, 2004, 96: 756–760.PubMedGoogle Scholar
  186. Sun J Z, Scharf M E. Insects and Biofuels. Insect Science, 2010, 17: 163–312. (Special Issue)Google Scholar
  187. Sun J Z. Could wood-feeding termites provide better biofuels? // Susan Jones. Proceedings of National Conference on Urban Entomology (NCUE). Tulsa: Urban Pest Roundup, 2008: 50–54.Google Scholar
  188. Sun J Z, Lockwood M E, Etheridge J L, et al. Distribution of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae) in Mississippi. J. Econ. Entomol., 2007, 100: 1400–1408.PubMedGoogle Scholar
  189. Taguchi F, Chang J D, Mizukami N, et al. Isolation of a hydrogen-producing bacterium, clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol., 1993, 39: 726–730.Google Scholar
  190. Taguchi F, Chang J D, Mizukami N, et al. Efficient hydrogen production from starch by a bacterium isolated from termites. J. Ferment. Bioengin., 1992, 73: 244–245.Google Scholar
  191. Tanaka H, Aoyagi H, Shina S. Influence of the diet compounds on the symbiotic microorganism community in hindgut of Coptotermes formosanus Shiraki. Appl. Microbiol. Biotechnol., 2006, 71: 907–917.PubMedGoogle Scholar
  192. Todaka N, Moriya S, Saita K, et al. Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol. Ecol., 2007, 59: 592–599.PubMedGoogle Scholar
  193. Tokuda G, Watanabe H. Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett., 2007, 3: 336–339.PubMedGoogle Scholar
  194. Tokuda G, Yamaoka I, Noda H. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Enviro. Microbiol., 2000, 66: 2199–2207.Google Scholar
  195. Tokuda G, Lo N, Watanabe H, et al. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim. Biophys. Acta., 1999, 1447: 146–159.PubMedGoogle Scholar
  196. Treves D S, Martin M M. Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). J. Chem. Ecol., 1994, 20: 2003–2020.Google Scholar
  197. Tsunoda K, Ohmura W, Yoshimura T, et al. Methane emission by the termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) I. Effect of termite caste, population size and volume of test containers. Wood Res., 1993, 79: 34–40.Google Scholar
  198. U.S. Department of Energy (DOE). 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, U.S. Department of Energy Office of Science and Office of Energy Efficicy and Renewable Energy ( Scholar
  199. Varma A, Kolli B K, Paul J, et al. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev., 1994, 15: 9–28.Google Scholar
  200. Veivers P C, O’Brien R W, Slaytor M. Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J. Insect Physiol., 1982, 28: 947–951.Google Scholar
  201. Waller D A, La Fage J P. Nutritional ecology of termites. // Slansky E. and Rodriguez J G. The nutritional ecology of insects, mites, and spiders and related invertebrates. New York: Wiley, 1987: 487–532.Google Scholar
  202. Ward O P, Moo-Young M. Enzymatic degradation of cell wall and related plant polysaccharides. CRC Crit. Rew. Biotechnol., 1989, 8: 237–274.Google Scholar
  203. Warneche F, Luginbuhl P, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Science, 2007, 450: 560–565.Google Scholar
  204. Watanabe Y, Shinzato N, Fukatsu T. Isolation of actinomycetes from termites’ gut. Biosci. Biotechnol. Biochem., 2003, 67: 1797–1801.PubMedGoogle Scholar
  205. Watanabe H, Tokuda G. Animal cellulases. Cell. Mol. Life Sci., 2001, 58: 1167–1178.PubMedGoogle Scholar
  206. Watanabe H, Noda H, Tokoda G, et al. A cellulase gene of termite origin. Nature, 1998, 394: 330–331.PubMedGoogle Scholar
  207. Weil J, Westgate P, Kohlmann K, et al. Cellulase pretreatments of lignocellulosic substrates. Enzyme Microb. Technol., 1994, 16: 1002–1004.PubMedGoogle Scholar
  208. Wen K Y. The isolation and characterization of Clostridum xylanolyticum Ter3, an isolate with cellulose-saccharifing and hydrogen-producing activities from termite hindgut. Master thesis, Taiwan: National Chung Hsing University, 2007.Google Scholar
  209. Wenzel M, Schönig I, Berchtold M, et al. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J. Appl. Microbiol., 2002, 92: 32–40.PubMedGoogle Scholar
  210. Wiedemann J F. Die Zelluloseverdauung bei Lamellicornierlarven. Z f Morphol u Ökol d Tiere, 1930, 19: 228–258.Google Scholar
  211. Wiselogel A, Tyson S, Johnson D. Biomass feedstock resources and composition. // Charles E Wyman. Handbook on bioethanol: production and utilization (Applied Energy Technology Series). Washington DC: Taylor and Francis, 1996: 105–118.Google Scholar
  212. Wood T G, Thomas R J. The mutualistic association between Macrotermitinae and Termitomyces. // Wilding N and Collins N M and Hammond P M. Insect-fungus Interactions. New York: Academic Press, 1989: 69–92.Google Scholar
  213. Worldwatch Institute. Biofuels for Transport: Global Potential and Implications for Sustainable Agriculture and Energy in the 21st Century. London: Earthscan Publications Ltd., 2007Google Scholar
  214. Yamin MA. Cellulose metabolism by the flagellate Trichonympha from the termite is independent of endosymbiotic bacteria. Science, 1981, 211: 58–59.PubMedGoogle Scholar
  215. Yamin M A. Cellulose metabolism by termite flagellate Trichomitopsis termopsides. Appl. Enviorn. Microbiol., 1980, 39: 859–863.Google Scholar
  216. Yamin M A. Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grasse and Hypermastigida Grassi & Foa reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology, 1979, 4: 3–119.Google Scholar
  217. Yamin M A. Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J. Protozool., 1978, 25: 535–538.Google Scholar
  218. Yang B, Wyman C. Pretreatment: the key to unlocking lowcost cellulosic ethanol. Biofuels Bioprod. Bioref., 2008, 2: 26–40.Google Scholar
  219. Yara K, Jahana K, Hayashi H. In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae, Macrotermitinae). Sociobiology, 1989, 15: 247–260.Google Scholar
  220. Yarlett N, Hackstein J H P. Hydrogenosomes: one organelle, multiple origins. Bioscience, 2005, 55: 657–668.Google Scholar
  221. Yoshimura T. Contribution of the protozoa fauna to nutritional physiology of the lower termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res., 1995, 82: 68–129.Google Scholar
  222. Yoshimura T. Distribution of the symbiotic protozoa in the hindgut of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Jpn. J. Environ. Entomol. Zool., 1992, 4: 115–120.Google Scholar
  223. Yuki M, Moriya S, Inoue T, et al. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoolog. Sci., 2008, 25: 401–406.PubMedGoogle Scholar
  224. Zhang Y H P, Himmel M E, Mielenz J R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv., 2006, 24: 452–481.Google Scholar
  225. Zhou X, Smith J A, Oi F M, et al. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite R. flavipes. Gene, 2007, 395: 29–39.PubMedGoogle Scholar
  226. Collins N M, Wood TG. Termites and atmospheric gas production. Science, 1984, 224(4644): 84–85.PubMedGoogle Scholar
  227. Zimmerman P R, Greenberg J P, Wandiga S O, Crutzen P J. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science, 1982, 218: 563–565.PubMedGoogle Scholar
  228. Zoberi M H, Grace J K. Fungi associated with the subterranean termite Reticulitermes flavipes in Ontario. Mycologia, 1990, 82: 289–294.Google Scholar
  229. Zoberi M H. The ecology of some fungi in a termite hill. Mycologia, 1979, 71: 537–545.Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jianzhong Sun
    • 1
  • Xuguo Joe Zhou
    • 2
  1. 1.Jiangsu UniversitySchool of the environmentZhenjiang, JiangsuChina
  2. 2.Insect Integrative Genomics, Department of EntomologyUniversity of KentuckyLexington, KentuckyUSA

Personalised recommendations