Model Refinement Using Bisimulation Quotients

  • Roland Glück
  • Bernhard Möller
  • Michel Sintzoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6486)


The paper shows how to refine large-scale or even infinite transition systems so as to ensure certain desired properties. First, a given system is reduced into a smallish, finite bisimulation quotient. Second, the reduced system is refined in order to ensure a given property, using any known finite-state method. Third, the refined reduced system is expanded back into an adequate refinement of the system given initially. The proposed method is based on a Galois connection between systems and their quotients. It is applicable to various models and bisimulations and is illustrated with a few qualitative and quantitative properties.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  2. 2.
    Clarke, E., Grumberg, O., Peled, D.: Model checking, 3rd edn. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: 4th Symp. Principles of Programming Languages, pp. 238–252. ACM, New York (1977)Google Scholar
  4. 4.
    Erné, M., Koslowski, J., Melton, A., Strecker, G.: A primer on Galois connections. In: Andima, S., et al. (eds.) Papers on general topology and its applications. 7th Summer Conf. Wisconsin. Annals New York Acad. Sci., New York, 704th edn., pp. 103–125 (1994)Google Scholar
  5. 5.
    Fernandez, J.-C.: An implementation of an efficient algorithm for bisimulation equivalence. Sci. Computer Programming 13(2-3), 219–236 (1989)MathSciNetMATHGoogle Scholar
  6. 6.
    Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.J., Schmitt, A.: Combinators for bidirectional tree transformations: a linguistic approach to the view-update problem. ACM Trans. Programming Languages and Systems  29(3), Article 17, 17–65 (2007)Google Scholar
  7. 7.
    Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in Markov decision processes. Artificial Intell. J. 147(1-2), 163–223 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Glück, R., Möller, B., Sintzoff, M.: A semiring approach to equivalences, bisimulations and control. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS 2009. LNCS, vol. 5827, pp. 134–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms. Springer, Heidelberg (2008)MATHGoogle Scholar
  10. 10.
    Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Trans. Computational Logic 6, 1–32 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86, 43–68 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Marchand, H., Pinchinat, S.: Supervisory control problem using symbolic bisimulation techniques. In: Proc. Amer. Control Conf., vol. 6, pp. 4067–4071 (2000)Google Scholar
  13. 13.
    Milner, R.: A calculus of communicating systems. Extended reprint of LNCS 92. University of Edinburgh, Laboratory for Foundations of Computer Science, Report ECS-LFCS-86-7 (1986)Google Scholar
  14. 14.
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Formal models and semantics. Handbook of Theoretical Computer Sci., vol. B, pp. 1201–1242. Elsevier, Amsterdam (1990)Google Scholar
  15. 15.
    Sintzoff, M.: Synthesis of optimal control policies for some infinite-state transition systems. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 336–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roland Glück
    • 1
  • Bernhard Möller
    • 1
  • Michel Sintzoff
    • 2
  1. 1.Universität AugsburgGermany
  2. 2.Université catholique de LouvainBelgium

Personalised recommendations