Model Refinement Using Bisimulation Quotients

  • Roland Glück
  • Bernhard Möller
  • Michel Sintzoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6486)


The paper shows how to refine large-scale or even infinite transition systems so as to ensure certain desired properties. First, a given system is reduced into a smallish, finite bisimulation quotient. Second, the reduced system is refined in order to ensure a given property, using any known finite-state method. Third, the refined reduced system is expanded back into an adequate refinement of the system given initially. The proposed method is based on a Galois connection between systems and their quotients. It is applicable to various models and bisimulations and is illustrated with a few qualitative and quantitative properties.


Model Class Complete Lattice Label Transition System Distribution Rule Galois Connection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  2. 2.
    Clarke, E., Grumberg, O., Peled, D.: Model checking, 3rd edn. MIT Press, Cambridge (2001)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: 4th Symp. Principles of Programming Languages, pp. 238–252. ACM, New York (1977)Google Scholar
  4. 4.
    Erné, M., Koslowski, J., Melton, A., Strecker, G.: A primer on Galois connections. In: Andima, S., et al. (eds.) Papers on general topology and its applications. 7th Summer Conf. Wisconsin. Annals New York Acad. Sci., New York, 704th edn., pp. 103–125 (1994)Google Scholar
  5. 5.
    Fernandez, J.-C.: An implementation of an efficient algorithm for bisimulation equivalence. Sci. Computer Programming 13(2-3), 219–236 (1989)MathSciNetMATHGoogle Scholar
  6. 6.
    Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.J., Schmitt, A.: Combinators for bidirectional tree transformations: a linguistic approach to the view-update problem. ACM Trans. Programming Languages and Systems  29(3), Article 17, 17–65 (2007)Google Scholar
  7. 7.
    Givan, R., Dean, T., Greig, M.: Equivalence notions and model minimization in Markov decision processes. Artificial Intell. J. 147(1-2), 163–223 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Glück, R., Möller, B., Sintzoff, M.: A semiring approach to equivalences, bisimulations and control. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.) RelMiCS 2009. LNCS, vol. 5827, pp. 134–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Gondran, M., Minoux, M.: Graphs, dioids and semirings: new models and algorithms. Springer, Heidelberg (2008)MATHGoogle Scholar
  10. 10.
    Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Trans. Computational Logic 6, 1–32 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three problems of equivalence. Information and Computation 86, 43–68 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Marchand, H., Pinchinat, S.: Supervisory control problem using symbolic bisimulation techniques. In: Proc. Amer. Control Conf., vol. 6, pp. 4067–4071 (2000)Google Scholar
  13. 13.
    Milner, R.: A calculus of communicating systems. Extended reprint of LNCS 92. University of Edinburgh, Laboratory for Foundations of Computer Science, Report ECS-LFCS-86-7 (1986)Google Scholar
  14. 14.
    Milner, R.: Operational and algebraic semantics of concurrent processes. In: van Leeuwen, J. (ed.) Formal models and semantics. Handbook of Theoretical Computer Sci., vol. B, pp. 1201–1242. Elsevier, Amsterdam (1990)Google Scholar
  15. 15.
    Sintzoff, M.: Synthesis of optimal control policies for some infinite-state transition systems. In: Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 336–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roland Glück
    • 1
  • Bernhard Möller
    • 1
  • Michel Sintzoff
    • 2
  1. 1.Universität AugsburgGermany
  2. 2.Université catholique de LouvainBelgium

Personalised recommendations