Advertisement

Proving Termination Properties with mu-term

  • Beatriz Alarcón
  • Raúl Gutiérrez
  • Salvador Lucas
  • Rafael Navarro-Marset
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6486)

Abstract

mu-term is a tool which can be used to verify a number of termination properties of (variants of) Term Rewriting Systems (TRSs): termination of rewriting, termination of innermost rewriting, termination of order-sorted rewriting, termination of context-sensitive rewriting, termination of innermost context-sensitive rewriting and termination of rewriting modulo specific axioms. Such termination properties are essential to prove termination of programs in sophisticated rewriting-based programming languages. Specific methods have been developed and implemented in mu-term in order to efficiently deal with most of them. In this paper, we report on these new features of the tool.

Keywords

Termination Property Proof Tree Strongly Connect Component Termination Proof Termination Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alarcón, B.: Innermost Termination of Context-Sensitive Rewriting. Master’s thesis, Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Valencia, Spain (2008)Google Scholar
  2. 2.
    Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving Termination of Context-Sensitive Rewriting with mu-term. Electronic Notes in Theoretical Computer Science 188, 105–115 (2007)Google Scholar
  3. 3.
    Alarcón, B., Gutiérrez, R., Lucas, S.: Context-Sensitive Dependency Pairs. Information and Computation 208, 922–968 (2010)Google Scholar
  4. 4.
    Alarcón, B., Lucas, S.: Termination of Innermost Context-Sensitive Rewriting Using Dependency Pairs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 73–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Alarcón, B., Lucas, S., Meseguer, J.: A Dependency Pair Framework for A ∨ C-Termination. In: Ölveczky, P. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving Termination with Matrix Interpretations over the Reals. In: Geser, A., Waldmann, J. (eds.) Proc. of the 10th International Workshop on Termination, WST 2009, pp. 12–15 (2009)Google Scholar
  7. 7.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236(1-2), 133–178 (2000)Google Scholar
  8. 8.
    Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Borralleras, C., Lucas, S., Rubio, A.: Recursive Path Orderings can be Context-Sensitive. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 314–331. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving Termination of Rewriting with C i ME. In: Rubio, A. (ed.) Proc. of the 6th International Workshop on Termination, WST 2003, pp. 71–73 (2003)Google Scholar
  12. 12.
    Durán, F., Lucas, S., Meseguer, J.: MTT: The Maude Termination Tool (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Endrullis, J.: Jambox, Automated Termination Proofs For String and Term Rewriting (2009), http://joerg.endrullis.de/jambox.html
  14. 14.
    Giesl, J., Middeldorp, A.: Innermost Termination of Context-Sensitive Rewriting. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS(LNAI), vol. 2450, pp. 231–244. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Giesl, J., Middeldorp, A.: Transformation Techniques for Context-Sensitive Rewrite Systems. Journal of Functional Programming 14(4), 379–427 (2004)Google Scholar
  16. 16.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automatic Reasoning 37(3), 155–203 (2006)Google Scholar
  18. 18.
    Gnaedig, I.: Termination of Order-sorted Rewriting. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 37–52. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Gramlich, B., Lucas, S.: Modular Termination of Context-Sensitive Rewriting. In: Proc. of the 4th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, PPDP 2002, pp. 50–61. ACM Press, New York (2002)Google Scholar
  20. 20.
    Gutiérrez, R., Lucas, S.: Proving Termination in the Context-Sensitive Dependency Pair Framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010)Google Scholar
  21. 21.
    Lucas, S.: Context-Sensitive Computations in Functional and Functional Logic Programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Google Scholar
  22. 22.
    Lucas, S.: Termination of Rewriting With Strategy Annotations. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 666–680. Springer, Heidelberg (2001)Google Scholar
  23. 23.
    Lucas, S.: mu-term: A tool for proving termination of context-sensitive rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Lucas, S.: Polynomials over the Reals in Proofs of Termination: from Theory to Practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Google Scholar
  25. 25.
    Lucas, S.: Proving Termination of Context-Sensitive Rewriting by Transformation. Information and Computation 204(12), 1782–1846 (2006)Google Scholar
  26. 26.
    Lucas, S., Meseguer, J.: Order-Sorted Dependency Pairs. In: Antoy, S., Albert, E. (eds.) Proc. of the 10th International ACM SIGPLAN Sympsium on Principles and Practice of Declarative Programming, PPDP 2008, pp. 108–119. ACM Press, New York (2008)Google Scholar
  27. 27.
    Schernhammer, F., Gramlich, B.: VMTL - A Modular Termination Laboratory. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 285–294. Springer, Heidelberg (2009)Google Scholar
  28. 28.
    Thiemann, R., Sternagel, C.: Loops under Strategies. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 17–31. Springer, Heidelberg (2009)Google Scholar
  29. 29.
    Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Optimizing mkb TT. In: Lynch, C. (ed.) In: Lynch, C. (ed.) Proc. of the 21st International Conference on Rewriting Techniques and Applications, RTA 2010. Leibniz International Proceedings in Informatics (LIPIcs), vol. 6, pp. 373–384. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010), http://drops.dagstuhl.de/opus/volltexte/2010/2664

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Beatriz Alarcón
    • 1
  • Raúl Gutiérrez
    • 1
  • Salvador Lucas
    • 1
  • Rafael Navarro-Marset
    • 1
  1. 1.ELP group, DSICUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations