Simulation of Geophysical Problems with DUNE-FEM

  • Slavko Brdar
  • Andreas Dedner
  • Robert Klöfkorn
  • Mirko Kränkel
  • Dietmar Kröner
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 115)


In this work we present simulations of different types of geophysical problems using the Dune and Dune-Fem software framework. We consider two-phase flow in porous media, a Stokes-Darcy coupled problem, and atmospheric flow problems. The basis of our schemes is the Discontinuous Galerkin discretizations.


Porous Medium Cloud Water Discontinuous Galerkin Method High Order Method Saturation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in dune. Computing 82(2-3), 121–138 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82(2-3), 103–119 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bastian, P., Droske, M., Engwer, C., Klöfkorn, R., Neubauer, T., Rumpf, M.: Towards a unified framework for scientific computing. In: Kornhuber, R., Hoppe, R., Keyes, D., Périaux, J., Pironneau, O., Xu, J. (eds.) Proceedings of the 15th Conference on Domain Decomposition Methods. LNCSE, vol. 40, pp. 167–174. Springer, Heidelberg (1976)Google Scholar
  5. 5.
    Bastian, P., Rivière, B.: Superconvergence and H(div) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42(10), 1043–1057 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bonaventura, L.: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 35, 78–107 (1978)CrossRefGoogle Scholar
  7. 7.
    Bryan, G.H., Fritsch, J.M.: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weath. Rev. 130, 2917–2928 (2002)CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. Computational Science & Engineering, vol. 2, xxix 531 p. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)zbMATHGoogle Scholar
  9. 9.
    Ciarlet, P., Lions, J.: Handbook of numerical analysis. Finite element methods (Part 1), vol. II. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Kanschat, G., Schotzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dedner, A.: Solving the system of Radiation Magnetohydrodynamics: for solar physical simulations in 3d. Ph.D. thesis, Universität Freiburg (2003),
  12. 12.
    Dedner, A., Klöfkorn, R.: A generic stabilization approach for higher order Discontinuous Galerkin methods for convection dominated problems. Preprint no. 8 (submitted to SIAM Sci. Comput.), Mathematisches Institut, Unversität Freiburg (2008),
  13. 13.
    Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes. Abstraction principles and the Dune-Fem module. Computing (to appear)Google Scholar
  14. 14.
    Doms, G., Förstner, J., Heise, E., Herzog, H.J., Raschendorfler, M., Schrodin, R., Reinhardt, T., Vogel, G.: A description of the nonhydrostatic regional model lm. part i: Physical parametrization. Internal Correspondence at the DWD, 1–126 (2005)Google Scholar
  15. 15.
    Epshteyn, Y., Rivière, B.: Fully implicit discontinuous finite element methods for two-phase flow. Appl. Numer. Math. 57(4), 383–401 (2007), doi:10.1016/j.apnum.2006.04.004zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ern, A., Mozolevski, I., Schuh, L.: Accurate velocity reconstruction for discontinuous Galerkin approximations of two-phase porous medium flows. C. R., Math., Acad. Sci. Paris 347(9-10), 551–554 (2009), doi:10.1016/j.crma.2009.02.011zbMATHMathSciNetGoogle Scholar
  17. 17.
    Ern, A., Nicaise, S., Vohralík, M.: An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R., Math., Acad. Sci. Paris 345(12), 709–712 (2007), doi:10.1016/j.crma.2007.10.036zbMATHMathSciNetGoogle Scholar
  18. 18.
    Helmig, R.: Multiphase flow and transport processes in the subsurface: a contribution to the modelling of hydrosystems. Springer, Berlin (1997)Google Scholar
  19. 19.
    Jäger, W., Mikelic, A., Neuss, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22(6), 2006–2028 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Klein, R.: Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theo. Comp. Fluid Dyn. 23(3), 161–195 (2009)CrossRefGoogle Scholar
  21. 21.
    Klöfkorn, R.: Numerics for Evolution Equations - A General Interface Based Design Concept. Ph.D. thesis, Universität Freiburg (2009),
  22. 22.
    Restelli, M., Giraldo, F.: A conservative discontinuous galerkin semi-implicit formulation for the navier-stokes equations in nonhydrostatic mesoscale modeling. J. Sci. Comput. 31, 2231–2257 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Slavko Brdar
    • 1
  • Andreas Dedner
    • 1
  • Robert Klöfkorn
    • 1
  • Mirko Kränkel
    • 1
  • Dietmar Kröner
    • 1
  1. 1.Section of Applied MathematicsUniversity of Freiburg i. Br.Freiburg i. Br.Germany

Personalised recommendations