Towards Technology Structure Mining from Scientific Literature

  • Behrang QasemiZadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6497)

Abstract

This paper introduces the task of Technology-Structure Mining to support Management of Technology. We propose a linguistic based approach for identification of Technology Interdependence through extraction of technology concepts and relations between them. In addition, we introduce Technology Structure Graph for the task formalization. While the major challenge in technology structure mining is the lack of a benchmark dataset for evaluation and development purposes, we describes steps that we have taken towards providing such a benchmark. The proposed approach is initially evaluated and applied in the domain of Human Language Technology and primarily results are demonstrated. We further explain plans and research challenges for evaluation of the proposed task.

References

  1. 1.
    Badawy, A.M.: Technology management simply defined: A tweet plus two characters. J. Eng. Technol. Manag. 26, 219–224 (2009)Google Scholar
  2. 2.
    Maynard, D., Yankova, M., Kourakis, R., Kokossis, A.: Ontology-based information extraction for market monitoring and technology watch. In: End User Apects of the Semantic Web (2005)Google Scholar
  3. 3.
    Fry, L.W.: Technology-structure research: three critical issues. Academy of Management Journal 25, 532–552 (1982)Google Scholar
  4. 4.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae Investigationes 30, 3–26 (2007)CrossRefGoogle Scholar
  5. 5.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Linguistics 28(3), 245–288 (2002)CrossRefGoogle Scholar
  6. 6.
    Khoo, C.S.G., Na, J.-C.: Semantic relations in information science. Annual Review of Information Science and Technology 40(1), 157–228 (2006)CrossRefGoogle Scholar
  7. 7.
    Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Bird, S., Dale, R., Dorr, B., Gibson, B., Joseph, M., Kan, M.-Y., Lee, D., Powley, B., Radev, D., Tan, Y.F.: The acl anthology reference corpus: A reference dataset for bibliographic research in computational linguistics. In: LREC 2008, Marrakech, Morocco (May 2008)Google Scholar
  9. 9.
    Hwa, R.: Learning probabilistic lexicalized grammars for natural language processing. PhD thesis, Harvard University, Cambridge, MA, USA. Adviser-Shieber, Stuart (2001)Google Scholar
  10. 10.
    Zhang, C.: Extracting chinese-english bilingual core terminology from parallel classified corpora in special domain. In: WI-IAT 2009, Washington, DC, USA, pp. 271–274. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  11. 11.
    Tseng, Y.-H., Lin, C.-J., Lin, Y.-I.: Text mining techniques for patent analysis. Information Processing & Management 43(5), 1216–1247 (2007); Patent ProcessingCrossRefGoogle Scholar
  12. 12.
    Oostdijk, N., Verberne, S., Koster, C.: Constructing a broad-coverage lexicon for text mining in the patent domain. In: LREC 2010, Valletta, Malta (May 2010)Google Scholar
  13. 13.
    Yoon, B., Phaal, R., Probert, D.: Structuring technological information for technology roadmapping: data mining approach. In: AIKED 2008, Stevens Point, Wisconsin, USA, pp. 417–422. World Scientific and Engineering Academy and Society, WSEAS (2008)Google Scholar
  14. 14.
    Cimiano, P., Buitelaar, P., Völker, J.: Ontology construction. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn., pp. 577–605 (2010)Google Scholar
  15. 15.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI, pp. 2670–2676 (2007)Google Scholar
  16. 16.
    Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., Soderland, S.: Textrunner: open information extraction on the web. In: NAACL 2007, pp. 25–26. ACL, Morristown (2007)Google Scholar
  17. 17.
    Tomita, M., Kee, M., Saito, H., Mitamura, T., Tomabechi, H.: The universal parser compiler and its application to a speech translation system. In: Proceedings of the 2nd Inter. Conf. on Theoretical and Methodological Issues in Machine Translation of Natural Languages, pp. 94–114 (1988)Google Scholar
  18. 18.
    QasemiZadeh, B., Buitelaar, P., Monaghan, F.: Developing a dataset for technology structure mining. In: Proc. of IEEE International Conference on Semantic Computing (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Behrang QasemiZadeh
    • 1
  1. 1.Unit for Natural Language Processing, DERINational University of IrelandGalwayIreland

Personalised recommendations