Measuring the Dynamic Bi-directional Influence between Content and Social Networks

  • Shenghui Wang
  • Paul Groth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


The Social Semantic Web has begun to provide connections between users within social networks and the content they produce across the whole of the Social Web. Thus, the Social Semantic Web provides a basis to analyze both the communication behavior of users together with the content of their communication. However, there is little research combining the tools to study communication behaviour and communication content, namely, social network analysis and content analysis. Furthermore, there is even less work addressing the longitudinal characteristics of such a combination. This paper presents a general framework for measuring the dynamic bi-directional influence between communication content and social networks. We apply this framework in two use-cases: online forum discussions and conference publications. The results provide a new perspective over the dynamics involving both social networks and communication content.


  1. 1.
    Ackland, R.: Social network services as data sources and platforms for e-researching social networks. Social Science Computer Review 27, 481–492 (2009)CrossRefGoogle Scholar
  2. 2.
    van Atteveldt, W., Kleinnijenhuis, J., Ruigrok, N.: Parsing, semantic networks, and political authority using syntactic analysis to extract semantic relations from dutch newspaper articles. Political Analysis 16(4), 428–446 (2008)CrossRefGoogle Scholar
  3. 3.
    Becker, H.A., Sanders, K.: Innovations in meta-analysis and social impact analysis relevant for tech mining. Technological Forecasting and Social Change 73(8), 966–980 (2006); tech Mining: Exploiting Science and Technology Information ResourcesCrossRefGoogle Scholar
  4. 4.
    Berelson, B.: Content Analysis in Communication Research. Free Press, New York (1952)Google Scholar
  5. 5.
    Bojars, U., Breslin, J.G., Peristeras, V., Tummarello, G., Decker, S.: Interlinking the social web with semantics. IEEE Intelligent Systems 23, 29–40 (2008)CrossRefGoogle Scholar
  6. 6.
    Bojrs, U., Breslin, J.G., Finn, A., Decker, S.: Using the semantic web for linking and reusing data across web 2.0 communities. Web Semant. 6(1), 21–28 (2008)CrossRefGoogle Scholar
  7. 7.
    Brouwers, L.: Het juiste woord. Standaard betekeniswoordenboek der Nederlandse taal, 7de druk, bewerkt door F. Clacs. Antwerpen: Standaard Uitgeverij (1989)Google Scholar
  8. 8.
    Budge, I., Klingemann, H.D., Volkens, A., Bara, J., Tanenbaum, E.: Mapping Policy Preferences. In: Estimates for Parties, Electors and Governments 1945-1998. Oxford University Press, Oxford (2001)Google Scholar
  9. 9.
    Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge (1992)Google Scholar
  10. 10.
    Ereteo, G., Buffa, M., Gandon, F., Corby, O.: Analysis of a real online social network using semantic web frameworks. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 180–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Gloor, P.A., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0: Identifying trends through semantic social network analysis. In: CSE (4), pp. 215–222. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  12. 12.
    Grabe, M., Kamhawi, R.: Hard wired for negative news? gender differences in processing broadcast news. Communication Research 33(5), 346–369 (2006)CrossRefGoogle Scholar
  13. 13.
    Hayes, A.F.: A Primer on Multilevel Modeling. Human Communication Research 4, 385–410 (2006)CrossRefGoogle Scholar
  14. 14.
    Holsti, O.R.: Content Analysis for the Social Sciences and Humanities. Addison-Wesley, Reading (1969)Google Scholar
  15. 15.
    Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network analysis of ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Jamali, M., Abolhassani, H.: Different aspects of social network analysis. In: IEEE/WIC/ACM International Conference on Web Intelligence, Hong Kong, pp. 66–72 (2006)Google Scholar
  17. 17.
    Kim, H.M., Biehl, M., Buzacott, J.A.: M-ci2: Modelling cyber interdependencies between critical infrastructures. In: Proceedings of 3rd IEEE International Conference on Industrial Informatics, pp. 644–648 (2005)Google Scholar
  18. 18.
    Krippendorff, D.K.H.: Content Analysis: An Introduction to Its Methodology. Sage Publications, Inc., Thousand Oaks (2003)Google Scholar
  19. 19.
    Leifeld, P., Haunss, S.: A comparison between political claims analysis and discourse network analysis: The case of software patents in the european union. In: MPI Collective Goods Preprint. 2010/21 (May 2010)Google Scholar
  20. 20.
    Martin, M.S., Gutierrez, C.: Representing, querying and transforming social networks with rdf/sparql. In: Aroyo, L., Traverso, P., Ciravegna, F. (eds.) Semantic Web: Research and Applications, pp. 293–307 (2009)Google Scholar
  21. 21.
    McCombs, M., Shaw, D.: The agenda-setting function of mass media. Public Opinion Quarterly (1972)Google Scholar
  22. 22.
    McCulloh, I., Carley, K.: Longitudianl dynamic network analysis, using the over time viewer feature in ora. Tech. rep., Institute for Software Research, School of Computer Science, Carnegie Mellon University (2009)Google Scholar
  23. 23.
    Mika, P.: Flink: Semantic web technology for the extraction and analysis of social networks. Journal of Web Semantics 3, 211–223 (2005)CrossRefGoogle Scholar
  24. 24.
    Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web dog food: the ESWC and ISWC metadata projects. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 802–815. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Oegema, D., Kleinnijenhuis, J., Anderson, K., Van Hoof, A.: Flaming and blaming: The influence of mass media content on interactions in on-line discussions. In: Konijn, E., Tanis, M., Utz, S. (eds.) Mediated Interpersonal Communication. Erlbaum, Mahwah (2008)Google Scholar
  26. 26.
    Oegema, D., Wang, S., Kleinnijenhuis, J.: Dynamics of online discussions about politics: a function of structural network properties, mass media attention or emotional utterances? In: Proceedings of the WebSci10: Extending the Frontiers of Society On-Line. US, Raleigh (April 2010)Google Scholar
  27. 27.
    Oliver, A.L., Montgomery, K.: Using field-configuring events for sense-making: A cognitive network approach. Journal of Management Stuidies 45, 1147–1167 (2008)CrossRefGoogle Scholar
  28. 28.
    Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, Newberry Park (2000)Google Scholar
  29. 29.
    Severin, W., Tankard, J.: Communication theories. Pearson, New York (2010)Google Scholar
  30. 30.
    Shumway, R.H.: Applied Statistical Time Series Analysis. Prentice Hall Series in Statistics. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  31. 31.
    Snijders, T.A.B., Bosker, R.J.: Multilevel analysis: an introduction to basic and advanced multilevel modeling. Sage, Thousand Oaks (1999)MATHGoogle Scholar
  32. 32.
    Tomasev, N., Mladenic, D.: Semantic web wiki: Social network analysis of page editing. In: LuzarStiffler, V., Jarec, I., Bekic, Z. (eds.) Proceedings of the ITI 2009 31st International Conference on Information Technology Interfaces, pp. 505–510 (2009)Google Scholar
  33. 33.
    Walgrave, S., Van Aelst, P.: The contingency of the mass medias political agenda setting power: Toward a preliminary theory. Journal of Communication 56, 88–190 (2006)CrossRefGoogle Scholar
  34. 34.
    Wimmer, R.D., Dominick, J.R.: Mass Media Research: An Introduction, 8th edn. Wadsworth, Belmont (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shenghui Wang
    • 1
  • Paul Groth
    • 1
  1. 1.VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations