Making Sense of Twitter
Abstract
Twitter enjoys enormous popularity as a micro-blogging service largely due to its simplicity. On the downside, there is little organization to the Twitterverse and making sense of the stream of messages passing through the system has become a significant challenge for everyone involved. As a solution, Twitter users have adopted the convention of adding a hash at the beginning of a word to turn it into a hashtag. Hashtags have become the means in Twitter to create threads of conversation and to build communities around particular interests.
In this paper, we take a first look at whether hashtags behave as strong identifiers, and thus whether they could serve as identifiers for the Semantic Web. We introduce some metrics that can help identify hashtags that show the desirable characteristics of strong identifiers. We look at the various ways in which hashtags are used, and show through evaluation that our metrics can be applied to detect hashtags that represent real world entities.
Keywords
Vector Space Model Twitter User Real World Entity Virtual Document Social Bookmark SystemReferences
- 1.Al-Khalifa, H.S., Davis, H.C.: Exploring the value of folksonomies for creating semantic metadata. International Journal on Semantic Web and Information Systems (2007)Google Scholar
- 2.Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proc. of CHI (2007)Google Scholar
- 3.Angeletou, S.: Semantic enrichment of folksonomy tagspaces. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 889–894. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 4.Benz, D., Grobelnik, M., Hotho, A., Jaschke, R., Mladenic, D., Servedio, V.D.P., Sizov, S., Szomszor, M.: Analyzing tag semantics across collaborative tagging systems. In: Dagstuhl Seminar 08391 - Working Group Summary (2008)Google Scholar
- 5.Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic grounding of tag relatedness in social bookmarking systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 6.Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems using information theory. In: Proc. of HT (2008)Google Scholar
- 7.Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., Giles, L.: Evaluating tagging behavior in social bookmarking systems: metrics and design heuristics. In: Proc. of GROUP (2007)Google Scholar
- 8.Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf. Sci. (2006)Google Scholar
- 9.Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational tagging in twitter. In: Proc. of HT (2010)Google Scholar
- 10.Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday (2009)Google Scholar
- 11.Kipp, M.E.: @toread and cool: Subjective, affective and associative factors in tagging. In: Proc. of CAIS/ACSI (2008)Google Scholar
- 12.Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proc. of WWW (2010)Google Scholar
- 13.Krner, C., Benz, D., Strohmaier, M., Hotho, A., Stumme, G.: Stop thinking, start tagging - tag semantics emerge from collaborative verbosity. In: Proc. of WWW (2010)Google Scholar
- 14.Letierce, J., Passant, A., Breslin, J., Decker, S.: Understanding how twitter is used to widely spread scientific messages. In: Proc. of WebSci. (2010)Google Scholar
- 15.Limpens, F., Monnin, A., Gandon, F., Laniado, D.: Speech acts meet tagging: NiceTag ontology. In: Proc. of I-SEMANTICS (2010)Google Scholar
- 16.Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. of HT (2006)Google Scholar
- 17.Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 18.Passant, A., Hastrup, T., Bojars, U., Breslin, J.: Microblogging: A semantic web and distributed approach. In: Proc. of SFSW (2008)Google Scholar
- 19.Passant, A., Laublet, P.: Meaning of a tag: A collaborative approach to bridge the gap between tagging and linked data. In: Proc. of LDOW (2008)Google Scholar
- 20.Raghavan, V.V., Wong, S.K.M.: A critical analysis of vector space model for information retrieval. Journal of the American Society for Information Science (1986)Google Scholar
- 21.Salton, G.: Automatic Text Processing – The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
- 22.Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Proc. of CSCW (2006)Google Scholar
- 23.Wagner, C., Strohmaier, M.: The wisdom in tweetonomies: Acquiring latent conceptual structures from social awareness streams. In: Proc. of SemSearch (2010)Google Scholar
- 24.Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proc. of WWW (2006)Google Scholar