An Expressive and Efficient Solution to the Service Selection Problem

  • Daniel Izquierdo
  • María-Esther Vidal
  • Blai Bonet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


Given the large number of Semantic Web Services that can be created from online sources by using existing annotation tools, expressive formalisms and efficient and scalable approaches to solve the service selection problem are required to make these services widely available to the users. In this paper, we propose a framework that is grounded on logic and the Local-As-View approach for representing instances of the service selection problem. In our approach, Web services are semantically described using LAV mappings in terms of generic concepts from an ontology, user requests correspond to conjunctive queries on the generic concepts and, in addition, the user may specify a set of preferences that are used to rank the possible solutions to the given request. The LAV formulation allows us to cast the service selection problem as a query rewriting problem that must consider the relationships among the concepts in the ontology and the ranks induced by the preferences. Then, building on related work, we devise an encoding of the resulting query rewriting problem as a logical theory whose models are in correspondence with the solutions of the user request, and in presence of preferences, whose best models are in correspondence with the best-ranked solutions. Thus, by exploiting known properties of modern SAT solvers, we provide an efficient and scalable solution to the service selection problem. The approach provides the basis to represent a large number of real-world situations and interesting user requests.


User Preference User Request Domain Ontology Relational Symbol Conjunctive Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afrati, F.N., Li, C., Ullman, J.D.: Using views to generate efficient evaluation plans for queries. J. Comput. Syst. Sci. 73(5), 703–724 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient qos-aware service composition. In: WWW, pp. 881–890 (2009)Google Scholar
  3. 3.
    Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman, K., Parundekar, R., Russ, T.A.: Automatically constructing semantic web services from online sources. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 17–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Arvelo, Y., Bonet, B., Vidal, M.-E.: Compilation of query-rewriting problems into tractable fragments of propositional logic. In: AAAI (2006)Google Scholar
  5. 5.
    Bayardo, R.: Relsat: A Propositional Satisfiability Solver and Model Counter,
  6. 6.
    Berardi, D., Cheikh, F., Giacomo, G.D., Patrizi, F.: Automatic Service Composition via Simulation. Int. J. Found. Comput. Sci. 19(2), 429–451 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Berardi, D., Giacomo, G.D., Mecella, M., Calvanese, D.: Composing Web Services with Nondeterministic Behavior. In: ICWS, pp. 909–912 (2006)Google Scholar
  8. 8.
    Chen, H., Wu, Z., Mao, Y.: Rewriting queries using views for rdf-based relational integration. In: ICTAI, pp. 260–264 (2005)Google Scholar
  9. 9.
    Darwiche, A.: The c2d compiler,
  10. 10.
    Darwiche, A.: New advances in compiling cnf into decomposable negation normal form. In: ECAI, pp. 328–332 (2004)Google Scholar
  11. 11.
    Darwiche, A., Marquis, P.: Compiling propositional weighted bases. Artif. Intell. 157(1-2), 81–113 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In: PODS, pp. 109–116 (1997)Google Scholar
  13. 13.
    Duschka, O.M., Genesereth, M.R.: Query planning in infomaster. In: SAC, pp. 109–111 (1997)Google Scholar
  14. 14.
    Een, N., Sorensson, N.: Minisat,
  15. 15.
    Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: An efficient Weighted Max-SAT Solver. Journal of Artificial Intelligence Research 31, 1–32 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jaudoin, H., Petit, J.-M., Rey, C., Schneider, M., Toumani, F.: Query rewriting using views in presence of value constraints. In: Description Logics (2005)Google Scholar
  17. 17.
    Junghans, M., Agarwal, S., Studer, R.: Towards practical semantic web service discovery. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 15–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Ko, J.M., Kim, C.O., Kwon, I.-H.: Quality-of-Service Oriented Web Service Composition Algorithm and Planning Architecture. Journal of Systems and Software 81(11), 2079–2090 (2008)CrossRefGoogle Scholar
  19. 19.
    Kuter, U., Golbeck, J.: Semantic web service composition in social environments. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 344–358. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lécué, F.: Optimizing qos-aware semantic web service composition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources using source descriptions. In: VLDB, pp. 251–262 (1996)Google Scholar
  22. 22.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Pottinger, R., Halevy, A.Y.: Minicon: A scalable algorithm for answering queries using views. VLDB J 10(2-3), 182–198 (2001)zbMATHGoogle Scholar
  24. 24.
    Rahmani, H., GhasemSani, G., Abolhassani, H.: Automatic Web Service Composition Considering User Non-functional Preferences. Next Generation Web Services Practices 0, 33–38 (2008)Google Scholar
  25. 25.
    Sohrabi, S., McIlraith, S.A.: Optimizing web service composition while enforcing regulations. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 601–617. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci. 239(2), 189–210 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective Optimization of SLA-aware Service Composition. In: IEEE Congress on Services, Workshop on Methodologies for Non-functional Properties in Services Computing (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Izquierdo
    • 1
  • María-Esther Vidal
    • 1
  • Blai Bonet
    • 1
  1. 1.Departamento de ComputaciónUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations