Assessing Trust in Uncertain Information

  • Achille Fokoue
  • Mudhakar Srivatsa
  • Rob Young
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6496)


On the Semantic Web, decision makers (humans or software agents alike) are faced with the challenge of examining large volumes of information originating from heterogeneous sources with the goal of ascertaining trust in various pieces of information. While previous work has focused on simple models for review and rating systems, we introduce a new trust model for rich, complex and uncertain information.We present the challenges raised by the new model, and the results of an evaluation of the first prototype implementation under a variety of scenarios.


Knowledge Base Information Source Bayesian Network Uncertain Information Probabilistic Annotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Cheng, J., Druzdzel, M.J.: AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks. Journal of AI Research (2000)Google Scholar
  3. 3.
    D’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Dolby, J., Fan, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Murdock, J.W., Srinivas, K., Welty, C.A.: Scalable cleanup of information extraction data using ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 100–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In: AAAI, pp. 299–304 (2007)Google Scholar
  6. 6.
    Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly expressive reasoner (sher). J. Web Sem. 7(4), 357–361 (2009)CrossRefGoogle Scholar
  7. 7.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. In: Springer Series in Statistics (2009)Google Scholar
  8. 8.
    Josang, A., Ismail, R.: The beta reputation system. In: 15th Conference on Electronic Commerce (2002)Google Scholar
  9. 9.
    Kalyanpur, A.: Debugging and Repair of OWL-DL Ontologies. PhD thesis, University of Maryland (2006),
  10. 10.
    Kamvar, S., Schlosser, M., Garcia-Molina, H.: EigenTrust: Reputation management in P2P networks. In: WWW Conference (2003)Google Scholar
  11. 11.
    Kuter, U., Golbeck, J.: SUNNY: A New Algorithm for Trust Inference in Social Networks, using Probabilistic Confidence Models. In: AAAI 2007 (2007)Google Scholar
  12. 12.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 124–139. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Netflix. Netflix Prize,
  14. 14.
    Schafer, J.B., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce. In: ACM Conference on Electronic Commerce (1999)Google Scholar
  15. 15.
    Xiong, L., Liu, L.: Supporting reputation based trust in peer-to-peer communities. IEEE Transactions on Knowledge and Data Engineering (TKDE) 71, 16(7) (July 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Achille Fokoue
    • 1
  • Mudhakar Srivatsa
    • 1
  • Rob Young
    • 2
  1. 1.IBM ResearchUSA
  2. 2.Defense Science and Technology LabUK

Personalised recommendations