Variations of a Hough-Voting Action Recognition System

  • Daniel Waltisberg
  • Angela Yao
  • Juergen Gall
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6388)

Abstract

This paper presents two variations of a Hough-voting framework used for action recognition and shows classification results for low-resolution video and videos depicting human interactions. For low-resolution videos, where people performing actions are around 30 pixels, we adopt low-level features such as gradients and optical flow. For group actions with human-human interactions, we take the probabilistic action labels from the Hough-voting framework for single individuals and combine them into group actions using decision profiles and classifier combination.

Keywords

human action recognition Hough-voting video analysis low-resolution video group action recognition activity recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, C.C., Aggarwal, J.K.: Recognizing human action from a far field of view. In: IEEE Workshop on Motion and Video Computing, WMVC (2009)Google Scholar
  2. 2.
    Chen, C.C., Ryoo, M.S., Aggarwal, J.K.: UT-Tower Dataset: Aerial View Activity Classification Challenge (2010), http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html
  3. 3.
    Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV (2003)Google Scholar
  4. 4.
    Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)Google Scholar
  5. 5.
    Kittler, J., Society, I.C., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  6. 6.
    Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34, 299–314 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Ryoo, M.S., Aggarwal, J.K.: UT-Interaction Dataset, ICPR contest on Semantic Description of Human Activities (SDHA) (2010), http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
  8. 8.
    Yao, A., Gall, J., van Gool, L.: A hough transform-based voting framework for action recognition. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Waltisberg
    • 1
  • Angela Yao
    • 1
  • Juergen Gall
    • 1
  • Luc Van Gool
    • 1
  1. 1.Computer Vision LaboratoryETH ZurichSwitzerland

Personalised recommendations