PicSOM Experiments in ImageCLEF RobotVision

  • Mats Sjöberg
  • Markus Koskela
  • Ville Viitaniemi
  • Jorma Laaksonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6388)

Abstract

The PicSOM multimedia analysis and retrieval system has previously been successfully applied to supervised concept detection in image and video databases. Such concepts include locations and events and objects of a particular type. In this paper we apply the general-purpose visual category recognition algorithm in PicSOM to the recognition of indoor locations in the ImageCLEF/ICPR RobotVision 2010 contest. The algorithm uses bag-of-visual-words and other visual features with fusion of SVM classifiers. The results show that given a large enough training set, a purely appearance-based method can perform very well – ranked first for one of the contest’s training sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajanki, A., Billinghurst, M., Kandemir, M., Kaski, S., Koskela, M., Kurimo, M., Laaksonen, J., Puolamäki, K., Tossavainen, T.: Ubiquitous contextual information access with proactive retrieval and augmentation. In: Proceedings of 4th International Workshop on Ubiquitous Virtual Reality 2010 at Pervasive 2010, Helsinki, Finland (May 2010)Google Scholar
  2. 2.
    Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. Personal and Ubiquitous Computing 1(4), 208–217 (1997)Google Scholar
  3. 3.
    ISO/IEC: Information technology - Multimedia content description interface - Part 3: Visual, 15938-3:2002(E) (2002)Google Scholar
  4. 4.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Special Issue on Intelligent Multimedia Processing 13(4), 841–853 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. of IEEE CVPR, vol. 2, pp. 2169–2178 (2006)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Mikolajcyk, K., Schmid, C.: Scale and affine point invariant interest point detectors. International Journal of Computer Vision 60(1), 68–86 (2004)Google Scholar
  8. 8.
    Pronobis, A., Caputo, B.: COLD: COsy Localization Database. The International Journal of Robotics Research (IJRR) 28(5) (May 2009)Google Scholar
  9. 9.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press, 2010)Google Scholar
  10. 10.
    Sjöberg, M., Viitaniemi, V., Koskela, M., Laaksonen, J.: PicSOM experiments in TRECVID 2009. In: Proceedings of the TRECVID 2009 Workshop, Gaithersburg, MD, USA (November 2009)Google Scholar
  11. 11.
    Smeaton, A.F., Over, P., Kraaij, W.: High-Level Feature Detection from Video in TRECVid: a 5-Year Retrospective of Achievements. In: Divakaran, A. (ed.) Multimedia Content Analysis, Theory and Applications, pp. 151–174. Springer, Berlin (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mats Sjöberg
    • 1
  • Markus Koskela
    • 1
  • Ville Viitaniemi
    • 1
  • Jorma Laaksonen
    • 1
  1. 1.Adaptive Informatics Research CentreAalto University School of Science and TechnologyAaltoFinland

Personalised recommendations