Rank-Mixer and Rank-Booster: Improving the Effectiveness of Retrieval Methods

  • Sebastian Kreft
  • Benjamin Bustos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6388)


In this work, we present two algorithms to improve the effectiveness of multimedia retrieval. One, as earlier approaches, uses several retrieval methods to improve the result, and the other uses one single method to achieve higher effectiveness. One of the advantages of the proposed algorithms is that they can be computed efficiently in top of existing indexes. Our experimental evaluation over 3D object datasets shows that the proposed techniques outperforms the multimetric approach and previously existing rank fusion methods.


Multimedia databases effectiveness boosting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akgül, C., et al.: Shrec 2009 track: Generic shape retrieval. In: Proc. Eurographics 2009 Workshop on 3D Object Retrieval (3DOR), pp. 61–68. Eurographics Association (2009)Google Scholar
  2. 2.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  3. 3.
    Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranić, D.: Using entropy impurity for improved 3D object similarity search. In: Proc. IEEE International Conference on Multimedia and Expo (ICME), pp. 1303–1306. IEEE, Los Alamitos (2004)Google Scholar
  4. 4.
    Bustos, B., Skopal, T.: Dynamic similarity search in multi-metric spaces. In: Proc. ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR), pp. 137–146. ACM Press, New York (2006)Google Scholar
  5. 5.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  6. 6.
    Cormack, G.V., Clarke, C.L.A., Büttcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: Proc. Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR), poster (2009)Google Scholar
  7. 7.
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proc. ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 301–312. ACM, New York (2003)Google Scholar
  8. 8.
    Fang, R., Godil, A., Li, X., Wagan, A.: A new shape benchmark for 3D object retrieval. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 381–392. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ho, T.K., Hull, J.J., Srihari, S.N.: On multiple classifier systems for pattern recognition. In: Proc. International Conference on Pattern Recognition (ICPR), pp. 66–75 (1992)Google Scholar
  10. 10.
    Müller, H., Kalpathy-Cramer, J.: The ImageCLEF medical retrieval task at ICPR 2010 - information fusion to combine visual and textual information. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 101–110. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Shape Modeling International (2004)Google Scholar
  12. 12.
    Suen, C.Y., Lam, L.: Multiple classifier combination methodologies for different output levels. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 52–66. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Vranic, D.V.: Desire: a composite 3D-shape descriptor. In: IEEE International Conference on Multimedia and Expo. (ICME), pp. 962–965 (2005)Google Scholar
  14. 14.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach (Advances in Database Systems). Springer, Heidelberg (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sebastian Kreft
    • 1
  • Benjamin Bustos
    • 1
  1. 1.PRISMA Research Group Department of Computer ScienceUniversity of ChileChile

Personalised recommendations