Advertisement

Abstract

Gender recognition is one of fundamental tasks of face image analysis. Most of the existing studies have focused on face images acquired under controlled conditions. However, real-world applications require gender classification on real-life faces, which is much more challenging due to significant appearance variations in unconstrained scenarios. In this paper, we investigate gender recognition on real-life faces using the recently built database, the Labeled Faces in the Wild (LFW). Local Binary Patterns (LBP) is employed to describe faces, and Adaboost is used to select the discriminative LBP features. We obtain the performance of 94.44% by applying Support Vector Machine (SVM) with the boosted LBP features. The public database used in this study makes future benchmark and evaluation possible.

Keywords

Gender Classification Local Binary Patterns AdaBoost Support Vector Machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: Sexnet: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems, NIPS (1991)Google Scholar
  2. 2.
    Brunelli, R., Poggio, T.: Hyperbf networks for gender classification. In: DRAPA Image Understanding Workshop (1992)Google Scholar
  3. 3.
    Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: International Conference on Pattern Recognition (ICPR), pp. 1099–1102 (2006)Google Scholar
  4. 4.
    Hadid, A., Pietikäinen, M.: Combining appearance and motion for face and gender recognition from videos. Pattern Recognition 42(11), 2818–2827 (2009)CrossRefGoogle Scholar
  5. 5.
    Moghaddam, B., Yang, M.: Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)CrossRefGoogle Scholar
  6. 6.
    BenAbdelkader, C., Griffin, P.: A local region-based approach to gender classification from face images. In: Computer Vision and Pattern Recognition Workshop, pp. 52–52 (2005)Google Scholar
  7. 7.
    Lapedriza, A., Marin-Jimenez, M.J., Vitria, J.: Gender recognition in non controlled environments. In: International Conference on Pattern Recognition (ICPR), pp. 834–837 (2006)Google Scholar
  8. 8.
    Baluja, S., Rowley, H.A.: Boosting set identification performance. International Journal of Computer Vision (IJCV) 71(1), 111–119 (2007)CrossRefGoogle Scholar
  9. 9.
    Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  10. 10.
    Shakhnarovich, G., Viola, P.A., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: IEEE International Conference on Automatic Face & Gesture Recognition (FG 2002), pp. 14–21 (2002)Google Scholar
  11. 11.
    Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: International Conference on Biometrics (ICB), pp. 169–178 (2009)Google Scholar
  12. 12.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07-49, University of Massachusetts, Amherst (October 2007)Google Scholar
  13. 13.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) Computer Vision – ACCV 2009. LNCS, vol. 5996. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: International Symposium on Neural Networks, pp. 194–201 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Caifeng Shan
    • 1
  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations