Advertisement

Optimizing Regenerator Cost in Traffic Grooming

(Extended Abstract)
  • Michele Flammini
  • Gianpiero Monaco
  • Luca Moscardelli
  • Mordechai Shalom
  • Shmuel Zaks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6490)

Abstract

In optical networks regenerators have to be placed on lightpaths in order to regenerate the signal. In addition, grooming enables the use of the same regenerator by several lightpaths. In this work we consider the problem of minimizing the number of regenerators used in traffic grooming in optical networks. We deal with the case in which a regenerator has to be placed at every internal node of each lightpath. Up to g (the grooming factor) lightpaths can use the same regenerator. Starting from the 4-approximation algorithm of [7] that solves this problem for a path topology, we provide an approximation algorithm with the same approximation ratio for the ring and tree topologies. We present also a technique based on matching that leads to the same approximation ratio in tree topology and can be used to obtain approximation algorithms in other topologies. We provide an approximation algorithm for general topology that uses this technique.

Keywords

Optical Networks Wavelength Division Multiplexing(WDM) Regenerators Traffic Grooming Tree Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, S., Ljubic, I., Raghavan, S.: The regenerator location problem. Networks 55(3), 205–220 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Dor, D., Tarsi, M.: Graph decomposition is np-complete: A complete proof of holyer’s conjecture. SIAM Journal on Computing 26(4), 1166–1187 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi, C.V., Tanzi, A., Zanardi, A.: A Framework for Regenerator Site Selection Based on Multiple Paths. In: Prooceedings of IEEE/OSA Conference on Optical Fiber Communications (OFC) (to appear, 2010)Google Scholar
  5. 5.
    Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi, C.V., Tanzi, A., Zanardi, A.: Traffic Independent Heuristics for Regenerator Site Selection for Providing Any-to-Any Optical Connectivity. In: Proceedings of IEEE/OSA Conference on Optical Fiber Communications (OFC) (to appear, 2010)Google Scholar
  6. 6.
    Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.: On the complexity of the regenerator placement problem in optical networks. IEEE/ACM Transactions on Networking (to appear, 2010)Google Scholar
  7. 7.
    Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T., Zaks, S.: Minimizing total busy time in parallel scheduling with application to optical networks. Theoretical Computer Science 411(40-42), 3553–3562 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Approximating the traffic grooming problem with respect to adms and oadms. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 920–929. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., Zaks, S.: Optimizing regenerator cost in traffic grooming. Technical report, Faculty of Computer Science, Technion (September 2010), http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2010/CS/CS-2010-16
  10. 10.
    Kim, S.W., Seo, S.W.: Regenerator placement algorithms for connection establishment in all-optical networks. IEE Proceedings Communications 148(1), 25–30 (2001)CrossRefGoogle Scholar
  11. 11.
    Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing regenerator in optical networks: New model, hardness results and algorithms. In: Gavoille, C. (ed.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 333–344. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Pachnicke, S., Paschenda, T., Krummrich, P.M.: Physical Impairment Based Regenerator Placement and Routing in Translucent Optical Networks. In: Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, paper OWA2) (2008)Google Scholar
  13. 13.
    Sriram, K., Griffith, D., Su, R., Golmie, N.: Static vs. dynamic regenerator assignment in optical switches: models and cost trade-offs. In: Workshop on High Performance Switching and Routing (HPSR), pp. 151–155 (2004)Google Scholar
  14. 14.
    Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: SODA, pp. 830–831 (2003)Google Scholar
  15. 15.
    Yang, X., Ramamurthy, B.: Dynamic routing in translucent WDM optical networks. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 955–971 (2002)Google Scholar
  16. 16.
    Yang, X., Ramamurthy, B.: Sparse Regeneration in Translucent Wavelength-Routed Optical Networks: Architecture, Network Design and Wavelength Routing. Photonic Network Communications 10(1), 39–53 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michele Flammini
    • 1
  • Gianpiero Monaco
    • 2
  • Luca Moscardelli
    • 3
  • Mordechai Shalom
    • 4
  • Shmuel Zaks
    • 5
  1. 1.Dipartmento di InformaticaUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Mascotte ProjectINRIA-I3S(CNRS/UNSA)Sophia AntipolisFrance
  3. 3.Dipartmento di ScienzeUniversità degli Studi di Chieti-PescaraPescaraItaly
  4. 4.Tel Hai Academic CollegeUpper GalileeIsrael
  5. 5.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations