Failure Detectors Encapsulate Fairness

  • Scott M. Pike
  • Srikanth Sastry
  • Jennifer L. Welch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6490)

Abstract

Failure detectors are commonly viewed as abstractions for the synchronism present in distributed system models. However, investigations into the exact amount of synchronism encapsulated by a given failure detector have met with limited success. The reason for this is that traditionally, models of partial synchrony are specified with respect to real time, but failure detectors do not encapsulate real time. Instead, we argue that failure detectors encapsulate the fairness in computation and communication. Fairness is a measure of the number of steps executed by one process relative either to the number of steps taken by another process or relative to the duration for which a message is in transit. We argue that oracles are substitutable for the fairness properties (rather than real-time properties) of partially synchronous systems. We propose four fairness-based models of partial synchrony and demonstrate that they are, in fact, the ‘weakest systems models’ to implement the canonical failure detectors from the Chandra-Toueg hierarchy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anta, A.F., Raynal, M.: From an asynchronous intermittent rotating star to an eventual leader. IEEE Transactions on Parallel and Distributed Systems 21(9), 1290–1303 (2010), http://dx.doi.org/10.1109/TPDS.2009.163 CrossRefGoogle Scholar
  2. 2.
    Biely, M., Hutle, M., Penso, L.D., Widder, J.: Relating stabilizing timing assumptions to stabilizing failure detectors regarding solvability and efficiency. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 4–20. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-76627-8_4 CrossRefGoogle Scholar
  3. 3.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43(2), 225–267 (1996), http://dx.doi.org/10.1145/226643.226647 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Charron-Bost, B., Guerraoui, R., Schiper, A.: Synchronous system and perfect failure detector: solvability and efficiency issues. In: International Conference on Dependable Systems and Networks, pp. 523–532 (2000), http://doi.ieeecomputersociety.org/10.1109/ICDSN.2000.857585
  5. 5.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P., Toueg, S.: The weakest failure detectors to solve certain fundamental problems in distributed computing. In: Proceedings of the 23rd ACM symposium on Principles of Distributed Computing (PODC), pp. 338–346 (2004), http://dx.doi.org/10.1145/1011767.1011818
  6. 6.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in asynchronous systems with failure detectors. Journal of Parallel and Distributed Computing 65(4), 492–505 (2005), http://dx.doi.org/10.1016/j.jpdc.2004.11.008 CrossRefMATHGoogle Scholar
  7. 7.
    Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for distributed consensus. Journal of the ACM 34(1), 77–97 (1987), http://doi.acm.org/10.1145/7531.7533 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988), http://doi.acm.org/10.1145/42282.42283 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distributed Computing 16(2-3), 121–163 (2003), http://dx.doi.org/10.1007/s00446-003-0091-y CrossRefGoogle Scholar
  10. 10.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985), http://doi.acm.org/10.1145/3149.214121 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hermant, J.F., Widder, J.: Implementing reliable distributed real-time systems with the Θ-model. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 334–350. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11795490_26 CrossRefGoogle Scholar
  12. 12.
    Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model for implementing Ω and consensus. IEEE Transactions on Dependable and Secure Computing 6(4), 269–281 (2009), http://dx.doi.org/10.1109/TDSC.2008.24 CrossRefGoogle Scholar
  13. 13.
    Jayanti, P., Toueg, S.: Every problem has a weakest failure detector. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, pp. 75–84 (2008), http://doi.acm.org/10.1145/1400751.1400763
  14. 14.
    Lo, W.K., Hadzilacos, V.: Using failure detectors to solve consensus in asynchronous shared-memory systems (extended abstract). In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 280–295. Springer, Heidelberg (1994), http://dx.doi.org/10.1007/BFb0020440 CrossRefGoogle Scholar
  15. 15.
    Mostefaoui, A., Mourgaya, E., Raynal, M.: An introduction to oracles for asynchronous distributed systems. Future Gener. Comput. Syst. 18(6), 757–767 (2002), http://dx.doi.org/10.1016/S0167-739X0200048-1 CrossRefMATHGoogle Scholar
  16. 16.
    Pike, S.M., Sastry, S., Welch, J.L.: Failure detectors encapsulate fairness. Tech. Rep. 2010-7-1, Department of Computer Science and Engineering, Texas A&M University (2010), http://www.cse.tamu.edu/academics/tr/2010-7-1
  17. 17.
    Pike, S.M., Song, Y., Sastry, S.: Wait-free dining under eventual weak exclusion. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 135–146. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-77444-0_11 CrossRefGoogle Scholar
  18. 18.
    Rajsbaum, S., Raynal, M., Travers, C.: Failure detectors as schedulers (an algorithmically-reasoned characterization). Tech. Rep. 1838, IRISA, Université de Rennes, France (2007), http://hal.inria.fr/inria-00139317/PDF/PI-1838.pdf
  19. 19.
    Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-69733-6_48 CrossRefGoogle Scholar
  20. 20.
    Robinson, P., Schmid, U.: The Asynchronous Bounded-Cycle Model. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 246–262. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-89335-6_20 CrossRefGoogle Scholar
  21. 21.
    Sastry, S., Pike, S.M.: Eventually perfect failure detection using ADD channels. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 483–496. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-74742-0_44 CrossRefGoogle Scholar
  22. 22.
    Sastry, S., Pike, S.M., Welch, J.L.: Crash fault detection in celerating environments. In: Procceding of the 23rd IEEE International Parallel and Distributed Processing Symposium, pp. 1–12 (2009), http://dx.doi.org/10.1109/IPDPS.2009.5161050

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Scott M. Pike
    • 1
  • Srikanth Sastry
    • 1
  • Jennifer L. Welch
    • 1
  1. 1.Dept. of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations