JHUF-5 Steganalyzer: Huffman Based Steganalytic Features for Reliable Detection of YASS in JPEG Images

  • Veena H. Bhat
  • S. Krishna
  • P. Deepa Shenoy
  • K. R. Venugopal
  • L. M. Patnaik
Part of the Communications in Computer and Information Science book series (CCIS, volume 123)


Yet Another Steganographic Scheme (YASS) is one of the recent steganographic schemes that embeds data at randomized locations in a JPEG image, to avert blind steganalysis. In this paper we present JHUF-5, a statistical steganalyzer wherein J stands for JPEG, HU represents Huffman based statistics, F denotes FR Index (ratio of file size to resolution) and 5 - the number of features used as predictors for classification. The contribution of this paper is twofold; first the ability of the proposed blind steganalyzer to detect YASS reliably with a consistent performance for several settings. Second, the algorithm is based on only five uncalibrated features for efficient prediction as against other techniques, some of which employs several hundreds of predictors. The detection accuracy of the proposed method is found to be superior to existing blind steganalysis techniques.


Statistical Steganalysis Huffman Coding YASS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bin, L., Jiwu, H., Yun, Q.S.: Steganalysis of YASS. IEEE Transaction on Information Forensics and Security 3, 369–382 (2009)CrossRefGoogle Scholar
  2. 2.
    Bhat, V.H., Krishna, S., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: JPEG Steganalysis using HBCL Statistics and FR Index. In: Chau, M. (ed.) PAISI 2010. LNCS, vol. 6122, pp. 105–112. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Pevn’y, T., Fridrich, J.: Merging Markov and DCT Features for Multi-class JPEG Steganalysis. In: Proc. of SPIE, San Jose, CA, vol. 6505, pp. 3–4 (2007)Google Scholar
  4. 4.
    Kodovsk’y, J., Fridrich, J.: Calibration Revisited. In: Proc. of the 11th ACM workshop on Multimedia and Security, New York, USA, pp. 63–74 (2009)Google Scholar
  5. 5.
    Shi, Y.Q., Chen, C., Chen, W.: A Markov Process based Approach to Effective Attacking JPEG Steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 249–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Fu, D., Shi, Y.Q., Zou, D., Xuan, G.: JPEG Steganalysis using Empirical Transition Matrix in Block DCT Domain. In: International Workshop on Multimedia Signal Processing, Victoria, BC, Canada (2006)Google Scholar
  7. 7.
    Chen, C., Shi, Y.Q.: JPEG Image Steganalysis Utilizing both Intrablock and Interblock Correlations. In: Proc. of Intl. Symposium on Circuits and Systems, pp. 3029–3032 (2008)Google Scholar
  8. 8.
    Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: Yet Another Steganographic Scheme that Resists Blind Steganalysis. In: Proc. of 9th International Workshop on Information Hiding, pp. 16–31 (2007)Google Scholar
  9. 9.
    Solanki, K., Sarkar, A., Manjunath, B.S.: Further Study on YASS: Steganography based on Randomized Embedding to Resist Blind Steganalysis. In: Proc. of SPIE, San Jose, CA, vol. 6819, pp. 16–31 (2008)Google Scholar
  10. 10.
    Kodovsky, J., Pevny, T., Fridrich, J.: Modern Steganalysis can Detect YASS. In: Proc. SPIE, Electronic Imaging, Media Forensics and Security XII, San Jose, CA (2010)Google Scholar
  11. 11.
    Lyu, S., Farid, H.: Detecting Hidden Messages using Higher-order Statistics and Support Vector Machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Pevny, T., Fridrich, J.: Multi-class Blind Steganalysis for JPEG Images. In: Proc. of SPIE, San Jose, CA, vol. 6072, pp. 1–13 (2006)Google Scholar
  13. 13.
    Solanki, K., Sullivan, K., Madhow, U., Manjunath, B.S., Chandrasekaran, S.: Probably Secure Steganography: Achieving Zero K-L Divergence using Statistical Restoration. In: Proc. ICIP, pp. 125–128 (2006)Google Scholar
  14. 14.
    Xuan, G., et al.: Steganalysis based on Multiple Features Formed by Statistical Moments of Wavelet Characteristic Functions. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Chen, C., Shi, Y.Q., Chen, W., Xuan, G.: Statistical Moments based Universal Steganalysis using JPEG-2D Array and 2-D Characteristic Function. In: Proc. ICIP, Atlanta, GA, USA, pp. 105–108 (2006)Google Scholar
  16. 16.
    Pevný, T., Bas, P., Fridrich, J.: Steganalysis by Subtractive Pixel Adjacency Matrix. In: Proc. of the 11th ACM Multimedia & Security Workshop, Princeton, pp. 75–84 (2009)Google Scholar
  17. 17.
    Huang, F., Huang, J., Shi, Y.Q.: An Experimental Study on the Security Performance of YASS. IEEE press, Los AlamitosGoogle Scholar
  18. 18.
    Chen, B., Wornell, G.W.: Quantization Index Modulation: A class of Provably Good Methods for Digital Watermarking and Information Embedding. IEEE Trans. on Information Theory 47, 1423–1443 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
  20. 20.
    Kharrazi, M., Sencar, H.T., Memon, N.: A Performance Study of Common Image Steganography and Steganalysis Techniques. Journal of Electronic Imaging 15(4) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Veena H. Bhat
    • 1
    • 3
  • S. Krishna
    • 1
  • P. Deepa Shenoy
    • 1
  • K. R. Venugopal
    • 1
  • L. M. Patnaik
    • 2
  1. 1.Department of Computer Science and EngineeringUniversity Visvesvaraya College of EngineeringBangaloreIndia
  2. 2.Defense Institute of Advanced TechnologyPuneIndia
  3. 3.IBS-BangaloreBangaloreIndia

Personalised recommendations