Advertisement

Genetically Modified Mice: Useful Models to Study Cause and Effect of Cardiac Arrhythmias?

  • Gregor Sachse
  • Martin Kruse
  • Olaf Pongs
Chapter

Abstract

Genetically modified mice represent a tremendous advancement for studying effects of disease-related mutations in depth with the aim to enlighten molecular and physiological mechanisms underlying correlations between genotype and phenotype. Here we discuss some of the limitations that one may encounter with knockout, knockin and transgenic mice in the study of particular gene mutations related to human cardiac disease, with particular emphasis on channelopathies.

Keywords

Ventricular Myocytes Cardiac Phenotype Ventricular Action Potential Mouse Ventricular Myocytes KCNH2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge financial support of the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for the cardiovascular research in our laboratory.

References

  1. 1.
    Fitzgerald SM, Gan L, Wickman A, Bergstrom G. Cardiovascular and renal phenotyping of genetically modified mice: a challenge for traditional physiology. Clin Exp Pharmacol Physiol. 2003;30:207–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Josephson ME, Zimetbaum P, Buxton AE, Marchlinski FE. The tachyarrhythmias. In: Fauci AS, Braunwald E, Isselbacher KJ, Wilson JD, Martin JB, Kasper DL, Hauser SL, Longo DL, editors. Harrison’s principles of internal medicine. New York: McGraw-Hill; 1998.Google Scholar
  3. 3.
    Fuster V. Hurst’s the heart. 10th ed. New York: McGraw-Hill Health Professions Division; 2001.Google Scholar
  4. 4.
    Chiang CE, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol. 2000;36:1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Nerbonne JM. Studying cardiac arrhythmias in the mouse – a reasonable model for probing mechanisms? Trends Cardiovasc Med. 2004;14:83–93.PubMedCrossRefGoogle Scholar
  6. 6.
    London B. Cardiac arrhythmias: from (transgenic) mice to men. J Cardiovasc Electrophysiol. 2001;12:1089–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Demolombe S, Lande G, Charpentier F, van Roon MA, van den Hoff MJ, Toumaniantz G, et al. Transgenic mice overexpressing human KvLQT1 dominant-negative isoform. Part I: phenotypic characterisation. Cardiovasc Res. 2001;50:314–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Technische Universität CAROLO-WILHELMINA zu Braunschweig. 2010. http://www.emg.tu-bs.de/bilder/forschung/eegekg/ekg_kurve.jpg.
  9. 9.
    Knollmann BC, Blatt SA, Horton K, de Freitas F, Miller T, Bell M, et al. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem. 2001;276:10039–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Roepke TK, Kontogeorgis A, Ovanez C, Xu X, Young JB, Purtell K, et al. Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f). FASEB J. 2008;22:3648–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev. 2005;85:1205–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Pongs O, Schwarz J. Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev. 2010;90:755–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Kurokawa J, Abriel H, Kass RS. Molecular basis of the delayed rectifier current I(ks)in heart. J Mol Cell Cardiol. 2001;33:873–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Sanguinetti MC. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann N Y Acad Sci. 1999;868:406–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Knollmann BC, Casimiro MC, Katchman AN, Sirenko SG, Schober T, Rong Q, et al. Isoproterenol exacerbates a long QT phenotype in Kcnq1-deficient neonatal mice: possible roles for human-like Kcnq1 isoform 1 and slow delayed rectifier K+ current. J Pharmacol Exp Ther. 2004;310:311–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA. 2003;100:15235–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J. 2003;22:216–24.PubMedCrossRefGoogle Scholar
  18. 18.
    London B, Pan X. QT interval prolongation and arrhythmias in heterozygous MERG1-targeted mice. Circulation. 1998;98:279.Google Scholar
  19. 19.
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000;102:89–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res. 2006;98:1422–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Li H, Guo W, Yamada KA, Nerbonne JM. Selective elimination of I(K,slow1) in mouse ventricular myocytes expressing a dominant negative Kv1.5alpha subunit. Am J Physiol Heart Circ Physiol. 2004;286:H319–28.PubMedCrossRefGoogle Scholar
  22. 22.
    Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM. Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit. Circ Res. 1999;85:623–33.PubMedGoogle Scholar
  23. 23.
    Guo W, Jung WE, Marionneau C, Aimond F, Xu H, Yamada KA, et al. Targeted deletion of Kv4.2 eliminates I(to, f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction. Circ Res. 2005;97:1342–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Charpentier F, Merot J, Riochet D, Le Marec H, Escande D. Adult KCNE1-knockout mice exhibit a mild cardiac cellular phenotype. Biochem Biophys Res Commun. 1998;251:806–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Drici MD, Arrighi I, Chouabe C, Mann JR, Lazdunski M, Romey G, et al. Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res. 1998;83:95–102.PubMedGoogle Scholar
  26. 26.
    Temple J, Frias P, Rottman J, Yang T, Wu Y, Verheijck EE, et al. Atrial fibrillation in KCNE1-null mice. Circ Res. 2005;97:62–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Roepke TK, King EC, Reyna-Neyra A, Paroder M, Purtell K, Koba W, et al. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med. 2009;15:1186–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Lees-Miller JP, Guo J, Somers JR, Roach DE, Sheldon RS, Rancourt DE, et al. Selective knockout of mouse ERG1 B potassium channel eliminates I(Kr) in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia. Mol Cell Biol. 2003;23:1856–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell. 2001;107:801–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol. 2001;533:697–710.PubMedCrossRefGoogle Scholar
  31. 31.
    Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron. 1998;20:103–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Casimiro MC, Knollmann BC, Ebert SN, Vary Jr JC, Greene AE, Franz MR, et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Proc Natl Acad Sci USA. 2001;98:2526–31.PubMedCrossRefGoogle Scholar
  33. 33.
    Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, et al. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med. 2001;7:1021–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Assarsson E, Chambers BJ, Hogstrand K, Berntman E, Lundmark C, Fedorova L, et al. Severe defect in thymic development in an insertional mutant mouse model. J Immunol. 2007;178:5018–27.PubMedGoogle Scholar
  36. 36.
    Vogler C, Galvin N, Levy B, Grubb J, Jiang J, Zhou XY, et al. Transgene produces massive overexpression of human beta -glucuronidase in mice, lysosomal storage of enzyme, and strain-dependent tumors. Proc Natl Acad Sci USA. 2003;100:2669–73.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269:1427–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA. 1992;89:5547–51.PubMedCrossRefGoogle Scholar
  39. 39.
  40. 40.
    Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, Smutko JS, et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet. 1997;17:280–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Doetschman T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol. 2009;530:423–33.PubMedCrossRefGoogle Scholar
  42. 42.
    Schlager G. Selection for blood pressure levels in mice. Genetics. 1974;76:537–49.PubMedGoogle Scholar
  43. 43.
    Merillat AM, Charles RP, Porret A, Maillard M, Rossier B, Beermann F, et al. Conditional gene targeting of the ENaC subunit genes Scnn1b and Scnn1g. Am J Physiol Renal Physiol. 2009;296:F249–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Struthers AD. The clinical implications of aldosterone escape in congestive heart failure. Eur J Heart Fail. 2004;6:539–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Svenson KL, Bogue MA, Peters LL. Invited review: Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl Physiol. 2003;94:1650–9. Discussion 1673.PubMedGoogle Scholar
  46. 46.
    Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 1997;19:755–9.Google Scholar
  47. 47.
    Wolfer DP, Crusio WE, Lipp HP. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 2002;25:336–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Nerbonne JM, Gerber BR, Norris A, Burkhalter A. Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents. J Physiol. 2008;586:1565–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112:3122–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, et al. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010;6:e1000874.PubMedCrossRefGoogle Scholar
  51. 51.
    Gazzerro E, Sotgia F, Bruno C, Lisanti MP, Minetti C. Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet. 2010;18:137–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut für Neurale SignalverarbeitungZMNH, University Hospital Hamburg-EppendorfHamburgGermany

Personalised recommendations