Sequential Item Pricing for Unlimited Supply

  • Maria-Florina Balcan
  • Florin Constantin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


We study prior-free revenue maximization for a seller with unlimited supply of n item types facing m myopic buyers present for \(k\!<\!\log n\) days. We show that a certain randomized schedule of posted prices has an approximation factor of \(O(\frac{\log m + \log n}{k})\). This algorithm relies on buyer valuations having hereditary maximizers, a novel natural property satisfied for example by gross substitutes valuations. We obtain a matching lower bound with multi-unit valuations. In light of existing results [2], k days can thus improve the approximation by a Θ(k) factor. We also provide a posted price schedule with the same factor for positive affine allocative externalities, despite an increase in the optimal revenue.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mahini, H., Mirrokni, V., Nikzad, A.: Optimal iterative pricing over social networks. In: Fifth Workshop on Ad Auctions (2009)Google Scholar
  2. 2.
    Balcan, M.-F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proc. ACM Conf. on Electronic Commerce, pp. 50–59 (2008)Google Scholar
  3. 3.
    Bansal, N., Chen, N., Cherniavsky, N., Rudra, A., Schieber, B., Sviridenko, M.: Dynamic pricing for impatient bidders. ACM Trans. Algorithms 6(2), 1–21 (2010)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertelsen, A.: Substitutes valuations and \(M^{\natural}\)-concavity. Master’s thesis, Hebrew University of Jerusalem (2004)Google Scholar
  5. 5.
    Bikhchandani, S., Ostroy, J.M.: Ascending price Vickrey auctions. Games and Economic Behavior 55(2), 215–241 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    David, H., Nagaraja, H.: Order Statistics. Wiley, Chichester (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. Journal of Economic Theory 87(1), 95–124 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing over social networks. In: Conference on the World Wide Web, WWW 2008 (2008)Google Scholar
  9. 9.
    Kleinberg, J.: Cascading behavior in networks: algorithmic and economic issues. Cambridge University Press, Cambridge (2007)Google Scholar
  10. 10.
    Lien, Y., Yan, J.: On the gross substitutes condition. Working Paper (July 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maria-Florina Balcan
    • 1
  • Florin Constantin
    • 1
  1. 1.College of ComputingGeorgia Institute of Technology 

Personalised recommendations