Market Equilibrium with Transaction Costs

  • Sourav Chakraborty
  • Nikhil R. Devanur
  • Chinmay Karande
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


Identical products being sold at different prices in different locations is a common phenomenon. To model such scenarios, we supplement the classical Fisher market model by introducing transaction costs. For every buyer i and good j, there is a transaction cost of c ij ; if the price of good j is p j , then the cost to the buyer i per unit of j is p j  + c ij . The same good can thus be sold at different (effective) prices to different buyers. We provide a combinatorial algorithm that computes ε-approximate equilibrium prices and allocations in \(O\left(\frac{1}{\epsilon}(n+\log{m})mn\log(B/\epsilon)\right)\) operations - where m is the number goods, n is the number of buyers and B is the sum of the budgets of all the buyers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chakraborty, S., Devanur, N.R., Karande, C.: Market equilibrium with transaction costs. CoRR, abs/1001.0393 (2010)Google Scholar
  2. 2.
    Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric substitutability. In: ACM Conference on Electronic Commerce, pp. 60–69 (2008)Google Scholar
  3. 3.
    Codenotti, B., Rademacher, L., Varadarajan, K.R.: Computing equilibrium prices in exchange economies with tax distortions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 584–595. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and ongoing market problems. In: STOC, pp. 315–324 (2008)Google Scholar
  5. 5.
    Devanur, N.R.: Fisher markets and convex programs (2008)(unpublished manuscript)Google Scholar
  6. 6.
    Garg, J.: Algorithms for Market Equilibrium. PhD thesis, Dept. of Computer Science and Engineering, IIT Bombay (2008)Google Scholar
  7. 7.
    Garg, R., Kapoor, S.: Auction algorithms for market equilibrium. In: Proceedings of 36th STOC (2004)Google Scholar
  8. 8.
    Garg, R., Kapoor, S., Vazirani, V.V.: An auction-based market equilbrium algorithm for the separable gross substitutibility case. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 128–138. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Garg, R., Kapoor, S.: Price roll-backs and path auctions: An approximation scheme for computing the market equilibrium. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 225–238. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory. ch. 2,5,6. Cambridge University Press, Cambridge (2007)Google Scholar
  11. 11.
    Orlin, J.B.: Improved algorithms for computing fisher’s market clearing prices: computing fisher’s market clearing prices. In: STOC, pp. 291–300 (2010)Google Scholar
  12. 12.
    Ye, Y.: A path to the arrow-debreu competitive market equilibrium. Mathematical Programming 111(1-2), 315–348 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sourav Chakraborty
    • 1
  • Nikhil R. Devanur
    • 2
  • Chinmay Karande
    • 3
  1. 1.Chennai Mathematical InstituteIndia
  2. 2.Microsoft ResearchRedmond
  3. 3.Google Inc.Mountain View

Personalised recommendations