Collusion in VCG Path Procurement Auctions

  • Yoram Bachrach
  • Peter Key
  • Morteza Zadimoghaddam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)

Abstract

We consider collusion in path procurement auctions, where payments are determined using the VCG mechanism. We show that collusion can increase the utility of the agents, and in some cases they can extract any amount the procurer is willing to offer. We show that computing how much a coalition can gain by colluding is NP-complete in general, but that in certain interesting restricted cases, the optimal collusion scheme can be computed in polynomial time. We examine the ways in which the colluders might share their payments, using the core and Shapley value from cooperative game theory. We show that in some cases the collusion game has an empty core, so although beneficial manipulations exist, the colluders would find it hard to form a stable coalition due to inability to decide how to split the rewards. On the other hand, we show that in several common restricted cases the collusion game is convex, so it has a non-empty core, which contains the Shapley value. We also show that in these cases colluders can compute core imputations and the Shapley value in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archer, A., Tardos, É.: Frugal path mechanisms. ACM Transactions on Algorithms, TALG (2007)Google Scholar
  2. 2.
    Aumann, R.: Acceptable points in general cooperative n-person games. In: Contributions to the Theory of Games, vol. IV, pp. 287–324 (1959)Google Scholar
  3. 3.
    Ausubel, L.M., Milgrom, P.: The lovely but lonely vickrey auction. In: Combinatorial Auctions, ch. 1, pp. 17–40 (2006)Google Scholar
  4. 4.
    Bachrach, Y.: Honor among thieves: Collusion in multi-unit auctions. In: AAMAS (2010)Google Scholar
  5. 5.
    Bachrach, Y., Elkind, E.: Divide and conquer: False-name manipulations in weighted voting games. In: AAMAS, pp. 975–982 (2008)Google Scholar
  6. 6.
    Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein, J.: The cost of stability in coalitional games. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) Algorithmic Game Theory. LNCS, vol. 5814, pp. 122–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A., Rosenschein, J., Saberi, A.: Approximating power indices: theoretical and empirical analysis. Autonomous Agents and Multi-Agent Systems 20(2), 105–122 (2010)CrossRefGoogle Scholar
  8. 8.
    Bachrach, Y., Rosenschein, J.S.: Computing the Banzhaf power index in network flow games. In: AAMAS, Honolulu, Hawaii, pp. 323–329 (May 2007)Google Scholar
  9. 9.
    Chen, C., Tauman, Y.: Collusion in one-shot second-price auctions. Economic Theory 28, 145–172 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)CrossRefGoogle Scholar
  11. 11.
    Day, R., Milgrom, P.: Core-selecting package auctions. International Journal of Game Theory 36(3), 393–407 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gillies, D.B.: Some theorems on n-person games (1953)Google Scholar
  13. 13.
    Groves, T.: Incentives in teams. Econometrica 41, 617–663 (1973)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Leyton-Brown, K., Shoham, Y., Tennenholtz, M.: Bidding clubs: institutionalized collusion in auctions. In: ACM EC (2000)Google Scholar
  15. 15.
    Leyton-Brown, K., Shoham, Y., Tennenholtz, M.: Bidding clubs in first-price auctions. In: AAAI (2002)Google Scholar
  16. 16.
    Matsui, Y., Matsui, T.: A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan 43 (2000)Google Scholar
  17. 17.
    Milgrom, P.: Putting Auction Theory To Work. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  18. 18.
    Monderer, D., Tennenholtz, M.: Strong mediated equilibrium. Artificial Intelligence 173(1), 180–195 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Resnick, E., Bachrach, Y., Meir, R., Rosenschein, J.: The cost of stability in network flow games. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 636–650. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Shapley, L.S.: A value for n-person games. Cont. Theory of Games (1953)Google Scholar
  21. 21.
    Shapley, L.S.: Cores of convex games. Internat. J. Game Theory 1, 12–26 (1971)MathSciNetMATHGoogle Scholar
  22. 22.
    Sullivan, A., Sheffrin, S.: Economics: principles in action. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  23. 23.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Weber, R.J.: Probabilistic values for games. Technical Report, Cowles (1977)Google Scholar
  25. 25.
    Winter, E.: The Shapley Value. Game theory with economic applications (2002)Google Scholar
  26. 26.
    Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., Iwasaki, A.: Coalitional games in open anonymous environments. In: AAAI (2005)Google Scholar
  27. 27.
    Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota in weighted voting games. In: AAAI (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yoram Bachrach
    • 1
  • Peter Key
    • 1
  • Morteza Zadimoghaddam
    • 2
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.MITCambridge

Personalised recommendations