Market Communication in Production Economies

  • Christopher A. Wilkens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)

Abstract

We study the information content of equilibrium prices using the market communication model of Deng, Papadimitriou, and Safra [4]. We show that, in the worst case, communicating an exact equilibrium in a production economy requires a number of bits that is a quadratic polynomial in the number of goods, the number of agents, the number of firms, and the number of bits used to represent an endowment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22(3), 265–290 (1954)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Calsamiglia, X.: Informational requirements of parametric resource allocation processes. In: Groves, T., Radner, R., Reiter, S. (eds.) Information, Incentives, and Economic Mechanisms. Basil Blackwell (1988)Google Scholar
  3. 3.
    Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and ongoing market problems. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 315–324. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Deng, X., Papadimitriou, C., Safra, S.: On the complexity of equilibria. In: STOC 2002: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 67–71. ACM, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilibrium via a primal-dual-type algorithm. In: FOCS 2002: Proceedings of the 43rd Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 389–395. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  6. 6.
    Hurwicz, L.: Optimality and informational efficiency in resource allocation processes. In: Arrow, K.J., Karlin, S., Suppes, P. (eds.) Mathematical Methods in the Social Sciences, pp. 27–46. Stanford University Press, Stanford (1960)Google Scholar
  7. 7.
    Jordan, J.S.: The competitive allocation process is informationally efficient uniquely. Journal of Economic Theory 28(1), 1–18 (1982)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kapoor, S., Mehta, A., Vazirani, V.: An auction-based market equilibrium algorithm for a production model. Theor. Comput. Sci. 378(2), 153–164 (2007)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (June 1995)Google Scholar
  10. 10.
    Mount, K., Reiter, S.: The informational size of message spaces. Journal of Economic Theory 8(2), 161–192 (1974)CrossRefGoogle Scholar
  11. 11.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)MATHGoogle Scholar
  12. 12.
    Nisan, N., Segal, I.: The communication requirements of efficient allocations and supporting prices. Journal of Economic Theory 129(1), 192–224 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tian, G.: On the informational requirements of decentralized pareto-satisfactory mechanisms in economies with increasing returns (October 2006)Google Scholar
  14. 14.
    Walras, L.: Elements of pure economics, or, The theory of social wealth / Leon Walras; translated by William Jaffe. American Economic Association and the Royal Economic Society, Allen, Unwin, London (1954)Google Scholar
  15. 15.
    Yao, A.C.-C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 1979: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, pp. 209–213. ACM, New York (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christopher A. Wilkens
    • 1
  1. 1.Computer Science DivisionUniversity of CaliforniaBerkeleyUSA

Personalised recommendations