The Complexity of Equilibria in Cost Sharing Games

  • Vasilis Syrgkanis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)

Abstract

We study Congestion Games with non-increasing cost functions (Cost Sharing Games) from a complexity perspective and resolve their computational hardness, which has been an open question. Specifically we prove that when the cost functions have the form f(x) = cr/x (Fair Cost Allocation) then it is PLS-complete to compute a Pure Nash Equilibrium even in the case where strategies of the players are paths on a directed network. For cost functions of the form f(x) = cr(x)/x, where cr(x) is a non-decreasing concave function we also prove PLS-completeness in undirected networks. Thus we extend the results of [7,1] to the non-increasing case. For the case of Matroid Cost Sharing Games, where tractability of Pure Nash Equilibria is known by [1] we give a greedy polynomial time algorithm that computes a Pure Nash Equilibrium with social cost at most the potential of the optimal strategy profile. Hence, for this class of games we give a polynomial time version of the Potential Method introduced in [2] for bounding the Price of Stability.

Keywords

Cost Sharing PLS-completeness Price of Stability Congestion Games 

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6) (2008)Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS, pp. 295–304. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  3. 3.
    Balcan, M.-F., Blum, A., Mansour, Y.: Circumventing the price of anarchy: Leading dynamics to good behavior. In: ICS, pp. 200–213 (2010)Google Scholar
  4. 4.
    Charikar, M., Karloff, H.J., Mathieu, C., Naor, J., Saks, M.E.: Online multicast with egalitarian cost sharing. In: SPAA, pp. 70–76. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. IEEE Journal on Selected Areas in Communications 25(6), 1193–1206 (2007)CrossRefGoogle Scholar
  6. 6.
    Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. In: EC, pp. 84–92. ACM, New York (2007)Google Scholar
  7. 7.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equilibria. In: STOC, pp. 604–612. ACM, New York (2004)Google Scholar
  8. 8.
    Hansen, T.D., Telelis, O.: Improved bounds for facility location games with fair cost allocation. In: COCOA 2009. LNCS, vol. 5573, pp. 174–185. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Harks, T., Hoefer, M., Klimm, M., Skopalik, A.: Computing pure nash and strong equilibria in bottleneck congestion games. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 29–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: AAAI, pp. 489–494 (2005)Google Scholar
  11. 11.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Matroids, Trees, Stable Sets, vol. B (2003)Google Scholar
  16. 16.
    Skopalik, A., Vöcking, B.: Inapproximability of pure nash equilibria. In: STOC, pp. 355–364. ACM, New York (2008)Google Scholar
  17. 17.
    Syrgkanis, V.: Equilibria in Congestion Game Models. Undergraduate Diploma Thesis (2009), http://www.cs.cornell.edu/~vasilis/thesis.pdf
  18. 18.
    Tardos, E., Kleinberg, J.: Algorithm Design, ch. 12. Addison-Wesley, Reading (2005)Google Scholar
  19. 19.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vasilis Syrgkanis
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthaca

Personalised recommendations