The Efficiency of Fair Division with Connected Pieces

  • Yonatan Aumann
  • Yair Dombb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


We consider the issue of fair division of goods, using the cake cutting abstraction, and aim to bound the possible degradation in social welfare due to the fairness requirements. Previous work has considered this problem for the setting where the division may allocate each player any number of unconnected pieces. Here, we consider the setting where each player must receive a single connected piece. For this setting, we provide tight bounds on the maximum possible degradation to both utilitarian and egalitarian welfare due to three fairness criteria — proportionality, envy-freeness and equitability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADK+04]
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS, pp. 295–304 (2004)Google Scholar
  2. [Alo87]
    Alon, N.: Splitting necklaces. Advances in Mathematics 63(3), 247–253 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. [BT95]
    Brams, S.J., Taylor, A.D.: An envy-free cake division protocol. The American Mathematical Monthly 102(1), 9–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. [BT96]
    Brams, S.J., Taylor, A.D.: Fair Division: From cake cutting to dispute resolution. Cambridge University Press, New York (1996)CrossRefMATHGoogle Scholar
  5. [CKKK09]
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency of fair division. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 475–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. [DS61]
    Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. The American Mathematical Monthly 68(1), 1–17 (1961)MathSciNetCrossRefMATHGoogle Scholar
  7. [EP84]
    Even, S., Paz, A.: A note on cake cutting. Discrete Applied Mathematics 7(3), 285–296 (1984)MathSciNetCrossRefMATHGoogle Scholar
  8. [EP06]
    Edmonds, J., Pruhs, K.: Cake cutting really is not a piece of cake. In: SODA 2006: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 271–278. ACM, New York (2006)CrossRefGoogle Scholar
  9. [MIBK03]
    Magdon-Ismail, M., Busch, C., Krishnamoorthy, M.S.: Cake-cutting is not a piece of cake. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 596–607. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [Mou04]
    Moulin, H.J.: Fair Division and Collective Welfare. MIT Press Books, vol. 0262633116. MIT Press, Cambridge (2004)Google Scholar
  11. [Pro09]
    Procaccia, A.D.: Thou shalt covet thy neighbor’s cake. In: IJCAI, pp. 239–244 (2009)Google Scholar
  12. [RW98]
    Robertson, J., Webb, W.: Cake-cutting algorithms: Be fair if you can. A K Peters, Ltd., Natick (1998)MATHGoogle Scholar
  13. [Ste49]
    Steinhaus, H.: Sur la division pragmatique. Econometrica 17(Supplement: Report of the Washington Meeting), 315–319 (1949)Google Scholar
  14. [Str80]
    Stromquist, W.: How to cut a cake fairly. The American Mathematical Monthly 87(8), 640–644 (1980)MathSciNetCrossRefMATHGoogle Scholar
  15. [Str08]
    Stromquist, W.: Envy-free cake divisions cannot be found by finite protocols. Electronic Journal of Combinatorics 15(1) (January 2008)Google Scholar
  16. [SW03]
    Sgall, J., Woeginger, G.J.: A lower bound for cake cutting. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 459–469. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yonatan Aumann
    • 1
  • Yair Dombb
    • 1
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat GanIsrael

Personalised recommendations