Strategic Cooperation in Cost Sharing Games

  • Martin Hoefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)

Abstract

In this paper we consider a large variety of strategic cost sharing games with so-called arbitrary sharing based on various combinatorial optimization problems, such as vertex and set cover, facility location, and network design problems. We concentrate on the existence and computational complexity of strong equilibria, in which no coalition can decrease the cost of every member.

Our main result reveals a connection between strong equilibrium in strategic games and the core in traditional coalitional cost sharing games studied in economics. For set cover and facility location games this results in a tight characterization of the existence of strong equilibrium using the integrality gap of suitable linear programming formulations.In addition, we are able to show that in general the strong price of anarchy is always 1, whereas the price of anarchy is known to be Θ(n) for Nash equilibria. Finally, we indicate that the LP-approach can also be used to compute near-optimal and near-stable approximate strong equilibria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econom. Behav. 65(2), 289–317 (2009)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anshelevich, E., Cascurlu, B., Hate, A.: Strategic multiway cut and multicut games. In: Proc. 8th Intl. Workshop Approximation and Online Algorithms, WAOA (to appear, 2010)Google Scholar
  3. 3.
    Anshelevich, E., Caskurlu, B.: Exact and approximate equilibria for optimal group network formation. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 239–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Roughgarden, T., Tardos, É., Wexler, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. Theory of Computing 4, 77–109 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Anshelevich, E., Karagiozova, A.: Terminal backup, 3D matching, and covering cubic graphs. In: Proc. 39th Symp. Theory of Computing (STOC), pp. 391–400 (2007)Google Scholar
  7. 7.
    Aumann, R.: Acceptable points in general cooperative n-person games. In: Contributions to the Theory of Games IV. Annals of Mathematics Study, vol. 40, pp. 287–324. Princeton University Press, Princeton (1959)Google Scholar
  8. 8.
    Bird, C.: On cost allocation for a spanning tree: A game theoretic approach. Networks 6, 335–350 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. J. Comput. Syst. Sci. 60(3), 564–574 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cardinal, J., Hoefer, M.: Non-cooperative facility location and covering games. Theoret. Comput. Sci. 411(16–18), 1855–1876 (2010)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. IEEE J. Sel. Area Comm. 25(6), 1193–1206 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, H.-L., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM J. Comput. 39(5), 1799–1832 (2010)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. Games Econom. Behav. 67(1), 51–68 (2009)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goemans, M., Skutella, M.: Cooperative facility location games. J. Algorithms 50(2), 194–214 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goemans, M., Williamson, D.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Granot, D.: A generalized linear production model: A unifying model. Math. Prog. 34, 212–222 (1986)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Granot, D., Huberman, G.: On minimum cost spanning tree games. Math. Prog. 21, 1–18 (1981)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Granot, D., Maschler, M.: Spanning network games. Intl. J. Game Theory 27, 467–500 (1998)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hoefer, M.: Non-cooperative tree creation. Algorithmica 53(1), 104–131 (2009)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hoefer, M.: Strategic cooperation in cost sharing games. arXiv 1003.3131 (March 2010)Google Scholar
  22. 22.
    Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost sharing schemes. ACM Trans. Algorithms 4(2) (2008); Special Issue SODA 2005Google Scholar
  23. 23.
    Könemann, J., Leonardi, S., Schäfer, G., van Zwam, S.: A group-strategyproof cost sharing mechanism for the Steiner forest game. SIAM J. Comput. 37(5), 1319–1341 (2008)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Owen, G.: On the core of linear production games. Math. Prog. 9, 358–370 (1975)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Prodon, A., Libeling, T., Gröflin, H.: Steiner’s problem on two-trees. Technical report, Départment de Mathemátiques, EPF Lausanne (1985); Working paper RO 850315Google Scholar
  26. 26.
    Tamir, A.: On the core of network synthesis games. Math. Prog. 50, 123–135 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Hoefer
    • 1
  1. 1.Dept. of Computer ScienceRWTH Aachen UniversityGermany

Personalised recommendations