Stackelberg Strategies for Network Design Games

  • Angelo Fanelli
  • Michele Flammini
  • Luca Moscardelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


We consider the Network Design game introduced by Anshelevich et al. [1] in which n source-destination pairs must be connected by n respective players equally sharing the cost of the used links. By considering the classical Open image in new window social function corresponding to the total network cost, it is well known that the price of anarchy for this class of games may be as large as n. One approach for reducing this bound is that of resorting on the Stackelberg model in which for a subset of \(\lfloor \alpha n \rfloor\) coordinated players, with 0 ≤ α ≤ 1, communication paths inducing better equilibria are fixed. In this paper we show the effectiveness of Stackelberg strategies by providing optimal and nearly optimal bounds on the performance achievable by such strategies. In particular, differently from previous works, we are also able to provide Stackelberg strategies computable in polynomial time and lowering the price of anarchy from n to \(2 \left( \frac 1 \alpha + 1 \right)\). Most of the results are extended to the social function Open image in new window , in which the maximum player cost is considered.


Nash Equilibrium Destination Node Steiner Tree Congestion Game Stackelberg Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonifaci, V., Harks, T., Schäfer, G.: Stackelberg routing in arbitrary networks. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 239–250. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based approximation for steiner tree. In: STOC, pp. 583–592 (2010)Google Scholar
  4. 4.
    Charikar, M., Karloff, H.J., Mathieu, C., Naor, J., Saks, M.E.: Online multicast with egalitarian cost sharing. In: SPAA, pp. 70–76 (2008)Google Scholar
  5. 5.
    Chekuri, C., Chuzhoy, J., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative multicast and facility location games. In: ACM Conference on Electronic Commerce, pp. 72–81 (2006)Google Scholar
  6. 6.
    Chen, H.-L., Roughgarden, T., Valiant, G.: Designing networks with good equilibria. In: SODA, pp. 854–863 (2008)Google Scholar
  7. 7.
    Fotakis, D.: Stackelberg strategies for atomic congestion games. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 299–310. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kaporis, A.C., Spirakis, P.G.: The price of optimum in stackelberg games on arbitrary single commodity networks and latency functions. Theor. Comput. Sci. 410(8-10), 745–755 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Karakostas, G., Kolliopoulos, S.G.: Stackelberg strategies for selfish routing in general multicommodity networks. Algorithmica 53(1), 132–153 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using stackelberg routing strategies. IEEE/ACM Trans. Netw. 5(1), 161–173 (1997)CrossRefGoogle Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Anil Kumar, V.S., Marathe, M.V.: Improved results for stackelberg scheduling strategies. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sharma, Y., Williamson, D.P.: Stackelberg thresholds in network routing games or the value of altruism. In: ACM Conference on Electronic Commerce, pp. 93–102 (2007)Google Scholar
  18. 18.
    Swamy, C.: The effectiveness of stackelberg strategies and tolls for network congestion games. In: SODA, pp. 1133–1142 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Angelo Fanelli
    • 1
  • Michele Flammini
    • 2
  • Luca Moscardelli
    • 3
  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingapore
  2. 2.Department of Computer ScienceUniversity of L’AquilaItaly
  3. 3.Department of ScienceUniversity of Chieti-PescaraItaly

Personalised recommendations