A Truthful Constant Approximation for Maximizing the Minimum Load on Related Machines

  • George Christodoulou
  • Annamária Kovács
  • Rob van Stee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


Designing truthful mechanisms for scheduling on related machines is a very important problem in single-parameter mechanism design. We consider the covering objective, that is we are interested in maximizing the minimum completion time of a machine. This problem falls into the class of problems where the optimal allocation can be truthfully implemented. A major open issue for this class is whether truthfulness affects the polynomial-time implementation.

We provide the first constant factor approximation for deterministic truthful mechanisms. In particular we come up with a 2 + ε approximation guarantee, significantly improving on the previous upper bound of min(m,(2+ε)sm/s1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proc. 42nd Annual Symposium on Foundations of Computer Science, pp. 482–491 (2001)Google Scholar
  2. 2.
    Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. In: Proc. 39th Annual ACM Symp. Theory of Comp. (STOC), pp. 114–121. ACM, New York (2007)Google Scholar
  3. 3.
    Azar, Y., Epstein, L.: On-line machine covering. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 23–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Azar, Y., Epstein, L.: Approximation schemes for covering and scheduling on related machines. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 39–47. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: Proc. 41st Annual ACM Symp. Theory of Comp., pp. 543–552. ACM, New York (2009)Google Scholar
  6. 6.
    Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fairness. In: Proc. 50th Annual IEEE Symp. on Found. of Comp. Sci. (FOCS), pp. 107–116. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  7. 7.
    Christodoulou, G., Kovács, A.: A deterministic truthful PTAS for scheduling related machines. In: Proc. 21st SIAM Symp. on Disc. Algs. (SODA), pp. 1005–1016. SIAM, Philadelphia (2010)Google Scholar
  8. 8.
    Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for single-parameter agents. In: Proc. 49th IEEE Symp. on Found. of Comp. Sci., FOCS (2008)Google Scholar
  9. 9.
    Efraimidis, P.S., Spirakis, P.G.: Approximation schemes for scheduling and covering on unrelated machines. Theoretical Computer Science 359(1-3), 400–417 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39(1), 43–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Epstein, L., van Stee, R.: Maximizing the minimum load for selfish agents. Theoretical Computer Science 411(1), 44–57 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Feige, U.: On allocations that maximize fairness. In: Proc. 19th annual ACM-SIAM Symp. Discr. Algs. (SODA), pp. 287–293. SIAM, Philadelphia (2008)Google Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1143–1152 (2007)Google Scholar
  15. 15.
    Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Skutella, M., Verschae, J.: A robust PTAS for machine covering and packing. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 36–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Woeginger, G.J.: A polynomial time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters 20(4), 149–154 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • George Christodoulou
    • 1
    • 3
  • Annamária Kovács
    • 2
  • Rob van Stee
    • 3
  1. 1.Cluster of Excellence “Multimodal Computing and Interaction”Saarland UniversitySaarbrückenGermany
  2. 2.Department of InformaticsGoethe UniversityFrankfurt am MainGermany
  3. 3.Max Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations