Truthful Mechanisms for Exhibitions

  • George Christodoulou
  • Khaled Elbassioni
  • Mahmoud Fouz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)

Abstract

We consider the following combinatorial auction: Given a range space Open image in new window, and m bidders interested in buying only ranges in Open image in new window, each bidder j declares her bid Open image in new window. We give a deterministic truthful mechanism, when the valuations are single-minded: when Open image in new window is a collection of fat objects (respectively, axis-aligned rectangles) in the plane, there is a truthful mechanism with a 1 + ε- (respectively, ⌈logn⌉)-approximation of the social welfare (where n is an upper bound on the maximum integral coordinate of each rectangle). We also consider the non-single-minded case, and design a randomized truthful-in-expectation mechanism with approximation guarantee O(1) (respectively, O(logm)).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3-4), 209–218 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Babaioff, M., Blumrosen, L.: Computationally-feasible truthful auctions for convex bundles. GEB 63(2), 588–620 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    de Berg, M., Gudmundsson, J., Katz, M., Levcopoulos, C., Overmars, M., van der Stappen, A.F.: TSP with Neighborhoods of varying size. J. of Algorithms 57, 22–36 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA, pp. 892–901 (2009)Google Scholar
  6. 6.
    Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46(2), 178–189 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Clarke, E.H.: Multipart pricing of public goods. Public Choice, 17–33 (1971)Google Scholar
  8. 8.
    Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. IPL 12, 133–137 (1981)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Groves, T.: Incentives in teams. Econometrica, 617–631 (1973)Google Scholar
  10. 10.
    Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary spectrum auctions. CoRR abs/1007.5032 (2010)Google Scholar
  11. 11.
    Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4, 310–323 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: SODA, pp. 384–393 (1998)Google Scholar
  13. 13.
    Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. In: FOCS, pp. 595–604 (2005)Google Scholar
  14. 14.
    Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. JACM 49(5), 577–602 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Sivakumar, D.: Algorithmic derandomization via complexity theory. In: STOC, pp. 619–626 (2002)Google Scholar
  17. 17.
    Stappen, A.: Motion Planning amidst Fat Obstacles. Ph.D. dissertation, Utrecht University, the Netherlands (1994)Google Scholar
  18. 18.
    Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal of Finance, 8–37 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • George Christodoulou
    • 1
    • 2
  • Khaled Elbassioni
    • 1
  • Mahmoud Fouz
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Cluster of Excellence “Multimodal Computing and Interaction”Universität des SaarlandesGermany
  3. 3.FR InformatikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations