Selective Call Out and Real Time Bidding

  • Tanmoy Chakraborty
  • Eyal Even-Dar
  • Sudipto Guha
  • Yishay Mansour
  • S. Muthukrishnan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


Ads on the Internet are increasingly sold via ad exchanges such as RightMedia, AdECN and Doubleclick Ad Exchange. These exchanges allow real-time bidding, that is, each time the publisher contacts the exchange, the exchange “calls out” to solicit bids from ad networks. This solicitation introduces a novel aspect, in contrast to existing literature. This suggests developing a joint optimization framework which optimizes over the allocation and well as solicitation.

We model this selective call out as an online recurrent Bayesian decision framework with bandwidth type constraints. We obtain natural algorithms with bounded performance guarantees for several natural optimization criteria. We show that these results hold under different call out constraint models, and different arrival processes. Interestingly, the paper shows that under MHR assumptions, the expected revenue of generalized second price auction with reserve is constant factor of the expected welfare. Also the analysis herein allow us prove adaptivity gap type results for the adwords problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azar, Y., Birnbaum, B.E., Karlin, A.R., Nguyen, C.T.: On revenue maximization in second-price ad auctions. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 155–166. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barlow, R.E., Marshall, A.W., Proschan, F.: Properties of probability distributions with monotone hazard rate. The Annals of Mathematical Statistics 34(2), 375–389 (1963)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bhattacharya, S., Goel, G., Gollapudi, S., Munagala, K.: Budget constrained auctions with heterogeneous items. In: STOC (2010),
  5. 5.
    Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 253–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and gap. In: Proceedings of FOCS, pp. 687–696 (2008)Google Scholar
  8. 8.
    Chawla, S., Hartline, J., Malec, D., Sivan, B.: Sequential posted pricing and multi-parameter mechanism design. In: STOC (2010),
  9. 9.
    Devanur, N., Hayes, T.: The adwords problem: Online keyword matching with budgeted bidders under random permutations. In: Proc. 10th Annual ACM Conference on Electronic Commerge, EC (2009)Google Scholar
  10. 10.
    Ghosh, A., McAfee, P., Papineni, K., Vassilvitskii, S.: Bidding for representative allocations for display advertising. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 208–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Ghosh, A., Rubinstein, B.I.P., Vassilvitskii, S., Zinkevich, M.: Adaptive bidding for display advertising. In: WWW, pp. 251–260 (2009)Google Scholar
  12. 12.
    Guha, S., McGregor, A.: Approximate quantiles and the order of the stream. In: Proc. of PODS, pp. 273–279 (2006)Google Scholar
  13. 13.
    Guha, S., Munagala, K.: Adaptive uncertainty resolution in bayesian combinatorial optimization problems. ACM Transactions of Algorithms (to appear)Google Scholar
  14. 14.
    Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections. SIAM J. Of Computing 30(1), 171–217 (2001)MathSciNetMATHGoogle Scholar
  15. 15.
    Kleinberg, R.: A multiple-choice secretary problem with applications to online auctions. In: Proceedings of SODA, pp. 630–631 (2005)Google Scholar
  16. 16.
    Kleinberg, R., Slivkins, A., Upfal, E.: Multi-armed bandits in metric spaces. In: STOC, pp. 681–690 (2008)Google Scholar
  17. 17.
    Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: SODA, pp. 545–554 (2009)Google Scholar
  18. 18.
    Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Mathematical Programming 68, 73–104 (1995)MathSciNetMATHGoogle Scholar
  19. 19.
    Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line matching. In: FOCS, pp. 264–273 (2005)Google Scholar
  20. 20.
    Muthukrishnan, S.: Adexchanges: Research issues. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 1–12. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Myerson, R.B.: Optimal auction design. Math. of OR 6(1), 58–73 (1981)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
  23. 23.
    Pandey, S., Olston, C.: Handling advertisements of unknown quality in search advertising. In: Proceedings of NIPS, pp. 1065–1072 (2006)Google Scholar
  24. 24.
  25. 25.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  26. 26.
    Tanenbaum, A.S.: Computer Networks, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)MATHGoogle Scholar
  27. 27.
    Vee, E., Vassilvitskii, S., Shanmugasundaram, J.: Optimal online assignment with forecasts. In: EC (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tanmoy Chakraborty
    • 1
  • Eyal Even-Dar
  • Sudipto Guha
    • 1
  • Yishay Mansour
    • 2
  • S. Muthukrishnan
    • 3
  1. 1.University of PennsylvaniaPhiladelphia
  2. 2.Google Israel and The Blavatnik School of Computer ScienceTel-Aviv UniversityTel-AvivIsrael
  3. 3.Google ResearchNew York

Personalised recommendations