Local Dynamics in Bargaining Networks via Random-Turn Games

  • L. Elisa Celis
  • Nikhil R. Devanur
  • Yuval Peres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)


We present a new technique for analyzing the rate of convergence of local dynamics in bargaining networks. The technique reduces balancing in a bargaining network to optimal play in a random-turn game. We analyze this game using techniques from martingale and Markov chain theory. We obtain a tight polynomial bound on the rate of convergence for a nontrivial class of unweighted graphs (the previous known bound was exponential). Additionally, we show this technique extends naturally to many other graphs and dynamics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Workshop on new connections between differential and random turn games, pde’s and image processing (2009)Google Scholar
  2. 2.
    Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoordinated two-sided matching markets. In: EC, pp. 256–263 (2008)Google Scholar
  3. 3.
    Azar, Y., Birnbaum, B., Celis, L.E., Devanur, N.R., Peres, Y.: Convergence of local dynamics to balanced outcomes in exchange networks. In: FOCS (2009)Google Scholar
  4. 4.
    Azar, Y., Devanur, N., Jain, K., Rabani, Y.: Monotonicity in bargaining networks. In: SODA (2010)Google Scholar
  5. 5.
    Bateni, M.H., Hajiaghayi, M.T., Immorlica, N., Mahini, H.: Network bargaining with capacity constraints. In: ICALP (2010)Google Scholar
  6. 6.
    Bayati, M., Borgs, C., Chayes, J.T., Zecchina, R.: Belief-propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions. SIAM J. in Discrete Math. (to appear, 2010)Google Scholar
  7. 7.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical Plays. Academic Press, London (1982)MATHGoogle Scholar
  8. 8.
    Chakraborty, T., Judd, S., Kearns, M., Tan, J.: A behavioral study of bargaining in social networks. In: EC (2010)Google Scholar
  9. 9.
    Chakraborty, T., Kearns, M.: Bargaining solutions in a social network. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 548–555. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Chakraborty, T., Kearns, M., Khanna, S.: Nash bargaining: Algorithms and structural results. In: EC (2009)Google Scholar
  11. 11.
    Charro, F., García Azorero, J., Rossi, J.D.: A mixed problem for the infinity Laplacian via tug-of-war games. Var. & Par. Differential Eq. 34(3), 307–320 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: FOCS, pp. 261–272 (2006)Google Scholar
  13. 13.
    Cook, K.S., Emerson, R.M., Gillmore, M.R., Yamagishi, T.: The distribution of power in exchange networks: Theory and experimental results. American Journal of Sociology 89, 275–305 (1983)CrossRefGoogle Scholar
  14. 14.
    Cook, K.S., Yamagishi, T.: Power in exchange networks: a power-dependence formulation. Social Networks 14(3-4), 245–265 (1992)CrossRefGoogle Scholar
  15. 15.
    Corominas-Bosch, M.: Bargaining in a network of buyers and sellers. Journal of Economic Theory 115(1), 35–77 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC, pp. 71–78 (2006)Google Scholar
  17. 17.
    Draief, M., Vojnovic, M.: Bargaining dynamics in exchange networks. In: The 48th Annual Allerton Conference on Communication, Control, and Computation, Monticello, IL (September 2010)Google Scholar
  18. 18.
    Faigle, U., Kern, W., Kuipers, J.: An efficient algorithm for nucleolus and prekernel computation in some classes of TU-games. Ph.D. thesis, Memorandum No. 1464, University of Twente (1998)Google Scholar
  19. 19.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The American Mathematical Monthly 69(1), 9–15 (1962)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jain, K.: A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities. SIAM J. Comput. 37(1), 303–318 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kanoria, Y.: An FPTAS for bargaining networks with unequal bargaining powers. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 282–293. Springer, Heidelberg (2010)Google Scholar
  22. 22.
    Kanoria, Y., Bayati, M., Borgs, C., Chayes, J.T., Montanari, A.: Fast convergence of natural bargaining dynamics on exchange networks. In: SODA (to appear, 2011)Google Scholar
  23. 23.
    Kleinberg, J., Tardos, E.: Balanced outcomes in social exhchange networks. In: STOC (2008)Google Scholar
  24. 24.
    Lazarus, A., Loeb, D.E., Propp, J.G., Stromquist, W.R., Ullman, D.H.: Combinatorial games under auction play. Games and Economic Behavior 27 (1999)Google Scholar
  25. 25.
    Lazarus, A., Loeb, D.E., Propp, J.G., Ullman, D.H.: Richman games. Games of No Chance 29, 439–449 (1996)MathSciNetMATHGoogle Scholar
  26. 26.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chain Mixing Times. Academic Mathematical Society, London (2009)MATHGoogle Scholar
  27. 27.
    Maschler, M.: The bargaining set, kernel, and nucleolus. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 1, ch. 18, pp. 591–667. Elsevier, Amsterdam (1992)Google Scholar
  28. 28.
    Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Paulusma, D.: Complexity Aspects of Cooperative Games. Ph.D. thesis, University of Twente, Enschede, the Netherlands (2001)Google Scholar
  30. 30.
    Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity laplacian. Journal of the AMS 22, 167–210 (2009)MathSciNetMATHGoogle Scholar
  31. 31.
    Rochford, S.C.: Symmetrically pairwise-bargained allocations in an assignment market. Journal of Economic Theory 34(2), 262–281 (1984)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sanghavi, S., Malioutov, D.M., Willsky, A.S.: Linear programming analysis of loopy belief propagation for weighted matching. In: NIPS (2007)Google Scholar
  33. 33.
    Shapley, L.S., Shubik, M.: The assignment game I: The core. Int. Journal of Game Theory 1(2), 111–130 (1972)MathSciNetMATHGoogle Scholar
  34. 34.
    Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of assignment games. Int. Journal of Game Theory 23(2), 119–143 (1994)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Willer, D. (ed.): Network Exchange Theory. Praeger (1999)Google Scholar
  36. 36.
    Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  37. 37.
    Yu, Y.: Maximal and minimal solutions of an Aronsson equation: L  ∞  variational problems versus the game theory. Var. & Par. Differential Eq. 37, 63–74 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • L. Elisa Celis
    • 1
  • Nikhil R. Devanur
    • 2
  • Yuval Peres
    • 2
  1. 1.University of WashingtonUSA
  2. 2.Microsoft ResearchUSA

Personalised recommendations