Constraint Handling in Transmission Network Expansion Planning

  • R. Mallipeddi
  • Ashu Verma
  • P. N. Suganthan
  • B. K. Panigrahi
  • P. R. Bijwe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6466)


Transmission network expansion planning (TNEP) is a very important and complex problem in power system. Recently, the use of metaheuristic techniques to solve TNEP is gaining more importance due to their effectiveness in handling the inequality constraints and discrete values over the conventional gradient based methods. Evolutionary algorithms (EAs) generally perform unconstrained search and require some additional mechanism to handle constraints. In EA literature, various constraint handling techniques have been proposed. However, to solve TNEP the penalty function approach is commonly used while the other constraint handling methods are untested. In this paper, we evaluate the performance of different constraint handling methods like Superiority of Feasible Solutions (SF), Self adaptive Penalty (SP),\(\mathcal E\)-Constraint (EC), Stochastic Ranking (SR) and the ensemble of constraint handling techniques (ECHT) on TNEP. The potential of different constraint handling methods and their ensemble is evaluated using an IEEE 24 bus system with and without security constraints.


Transmission network expansion planning differential Evolution security constraints optimization constraint handling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garver, L.L.: Transmission network estimation using linear programming. IEEE Transactions on PAS 89(7), 1688–1697 (2007)Google Scholar
  2. 2.
    da Silva, E.L., Gil, H.A., Areiza, J.M.: Transmission network expansion planning under an improved genetic algorithm. IEEE Transactions on Power Syst. 15(3), 1168–1175 (2000)CrossRefGoogle Scholar
  3. 3.
    Escobar, A.H., Gallego, R.A., Romero, R.: Multistage and Coordinated planning of the expansion of transmission systems. IEEE Transactions on Power Syst. 19(2), 735–744 (2004)CrossRefGoogle Scholar
  4. 4.
    Romero, R., Rider, M.J., de Silva, I.J.: A Metaheuristic to solve the Transmission Expansion Planning. IEEE Transactions on Power Syst. 22(4), 2289–2291 (2007)CrossRefGoogle Scholar
  5. 5.
    Romero, R., Gallego, R.A., Monticelli, A.: Transmission network expansion planning by Simulated Annealing’. IEEE Transactions on Power Syst. 11(1), 364–369 (1990)CrossRefGoogle Scholar
  6. 6.
    Gallego, R.A., Romero, R., Monticelli, A.J.: Tabu search algorithm for network synthesis. IEEE Transactions on Power Syst. 15(2), 490–495 (2002)CrossRefGoogle Scholar
  7. 7.
    de Silva, E.L., Oliveira, G.C., Binato, S.: Transmission network expansion planning under a tabu search approach. IEEE Transactions on Power Syst. 16(1), 62–68 (2001)CrossRefGoogle Scholar
  8. 8.
    Binato, S., de Oliveira, G.C., de Araújo, J.L.: A greedy randomized adaptive search procedure for transmission expansion planning. IEEE Transactions on Power Syst. 16(2), 247–253 (2001)CrossRefGoogle Scholar
  9. 9.
    Jin, Y.X., Cheng, H.Z., Yan, Y.J., Zhang, L.: New discrete particle swarm optimization and its application in transmission network expansion planning. Electric power system research 77, 227–233 (2007)CrossRefGoogle Scholar
  10. 10.
    Verma, A., Panigrahi, B.K., Bijwe, P.R.: Harmony Search algorithm for transmission network expansion planning. IET Generation, Transmission and Distribution 4(6), 663–673 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Coello, C.A.: Theoretical and Numerical Constraint-handling Techniques used with Evolutionary Algorithms: A Survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191, 1245–1287 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained parameter Optimization Problems. Evolutionary Computation 4, 1–32 (1996)CrossRefGoogle Scholar
  13. 13.
    Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation 7, 19–44 (1999)CrossRefGoogle Scholar
  14. 14.
    Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)CrossRefGoogle Scholar
  15. 15.
    Mallipeddi, R., Suganthan, P.N.: Ensemble of Constraint Handling Techniques. IEEE Transactions on Evolutionary Computation (2010)Google Scholar
  16. 16.
    Michalewicz, Z., Fogel, D.B.: How to solve it: Modern Heuristics. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    de Silva, I., Rider, M.J., Romero, R., Garcia, A.V., Murari, C.A.: Transmission network expansion planning with security constraints. In: IEE Proc. Gener. Transm. Distrib., vol. 152(6), pp. 828–836 (2005)Google Scholar
  18. 18.
    Qin, K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13, 398–417 (2009)CrossRefGoogle Scholar
  19. 19.
    Fang, R., Hill, D.J.: A new strategy for transmission expansion in competitive electricity markets. IEEE Trans. Power Syst. 18(1), 374–380 (2003)CrossRefGoogle Scholar
  20. 20.
    Romero, R., Rocha, C., Mantovani, J.R.S., Sánchez, I.G.: Constructive heuristic algorithm for the DC model in network transmission expansion planning. IEE Proc. Gener. Transm. Distrib. 152(2), 277–282 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. Mallipeddi
    • 1
  • Ashu Verma
    • 2
  • P. N. Suganthan
    • 1
  • B. K. Panigrahi
    • 3
  • P. R. Bijwe
    • 3
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore
  2. 2.Department of Energy and EnvironmentThe Energy and Resources Institute (TERI) UniversityDelhiIndia
  3. 3.Department of Electrical EngineeringIndian Institute of TechnologyDelhiIndia

Personalised recommendations