Expedite Particle Swarm Optimization Algorithm (EPSO) for Optimization of MSA

  • Amit Rathi
  • Ritu Vijay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6466)


This paper presents a new designing method of Rectangular patch Microstrip Antenna using an Artificial searches Algorithm with some constraints. It requires two stages for designing. In first stage, bandwidth of MSA is modeled using bench Mark function. In second stage, output of first stage give to modified Artificial search Algorithm which is Particle Swarm Algorithm (PSO) as input and get output in the form of five parameter- dimensions width, frequency range, dielectric loss tangent, length over a ground plane with a substrate thickness and electrical thickness. In PSO Cognition, factor and Social learning Factor give very important effect on balancing the local search and global search in PSO. Basing the modification of cognition factor and social learning factor, this paper presents the strategy that at the starting process cognition-learning factor has more effect then social learning factor. Gradually social learning factor has more impact after learning cognition factor for find out global best. The aim is to find out under above circumstances these modifications in PSO can give better result for optimization of microstrip Antenna (MSA).


Artificial Search Algorithm inverse modeling Particle Swarm Optimization Cognition Factor Social Learning Factor Local Search and Global Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Bakwad, K.M., Patnayak, S.S., Sohi, B.S., Devi, S., Gollapudi, S.V.R.S., Vidya Sagar, C., Patra, P.K.: Small population Based Modified Parallel Particle swarm Optimization for Motion Estimation. In: Proc. IEEE Int. (2008)Google Scholar
  3. 3.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–296 (2006)CrossRefGoogle Scholar
  4. 4.
    Yazdi, H.S., Yazdi, M.S.: Particle swarm optimization –Based Rectangular Microstrip Antenna Designing. International Journal of Computer and Electrical Engineering 1(4), 1793–8163 (2009)Google Scholar
  5. 5.
    Kara, M.: A simple technique for the calculation of bandwidth of rectangular microstrip antenna elements with various substratethicknesse, Microw. Microw. Opt. Technol. Lett. 12, 16–20 (1996)CrossRefGoogle Scholar
  6. 6.
    Pozar, Schaubert: Microstrip Antennas. Proceedings of the IEEE 80 (1992)Google Scholar
  7. 7.
    Kara, M.: A novel technique to calculate the bandwidth of rectangular microstrip antenna elements with thick substrates. Microw. Opt. Technol. Lett. 12, 59–64 (1996)CrossRefGoogle Scholar
  8. 8.
    Sagiroglu, S., Guney, K., Erler, M.: Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons. Int. J. Microw Comput. Aided Eng. 9, 277–286 (1999)CrossRefGoogle Scholar
  9. 9.
    Kaplan, A., Guney, K., Ozer, S.: Fuzzy associative memories for the computation of the bandwidth of rectangular microstrip antennas with thin and thick substrates. Int. J. Electron. 88, 189–195 (2001)CrossRefGoogle Scholar
  10. 10.
    Bahl, I.J., Bhartia, P.: Microstrip antennas. Artech House, Canton (1980)Google Scholar
  11. 11.
    Pozar, D.M.: Considerations for millimeter wave printed antennas. IEEE Trans. Antennas Propagat. 31, 740–747 (1983)CrossRefGoogle Scholar
  12. 12.
    Wi, S.-H., Lee, Y.-S., Yook, J.G.: Wideband Microstrip Patch Antenna With U Shaped Parasitic Elements. IEEE Transaction On Antenna and Propagation 55(4) (April 2007)Google Scholar
  13. 13.
    Liang, J.J., Suganthan, P.N.: Dynamic Multi-Swarm Particle Swarm Optimizer. In: IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, pp. 124–129 (2005)Google Scholar
  14. 14.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Trans. on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Amit Rathi
    • 1
  • Ritu Vijay
    • 1
  1. 1.Department of ElectronicsBanasthali UniversityBanasthali, TonkIndia

Personalised recommendations