Advertisement

Self-adaptive Differential Evolution with Modified Multi-Trajectory Search for CEC’2010 Large Scale Optimization

  • Shi-Zheng Zhao
  • Ponnuthurai Nagaratnam Suganthan
  • Swagatam Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6466)

Abstract

In order to solve large scale continuous optimization problems, Self-adaptive DE (SaDE) is enhanced by incorporating the JADE mutation strategy and hybridized with modified multi-trajectory search (MMTS) algorithm (SaDE-MMTS). The JADE mutation strategy, the “DE/current-to-pbest” which is a variation of the classic “DE/current-to-best”, is used for generating mutant vectors. After the mutation phase, the binomial (uniform) crossover, the exponential crossover as well as no crossover option are used to generate each pair of target and trial vectors. By utilizing the self-adaptation in SaDE, both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, suitable offspring generation strategy along with associated parameter settings will be determined adaptively to match different phases of the search process. MMTS is applied frequently to refine several diversely distributed solutions at different search stages satisfying both the global and the local search requirement. The initialization of step sizes is also defined by a self-adaption during every MMTS step. The success rates of both SaDE and the MMTS are determined and compared, consequently, future function evaluations for both search algorithms are assigned proportionally to their recent past performance. The proposed SaDE-MMTS is employed to solve the 20 numerical optimization problems for the CEC’2010 Special Session and Competition on Large Scale Global Optimization and competitive results are presented.

Keywords

Evolutionary algorithm Large Scale Global Optimization Differential Evolution Self-adaptive modified multi-trajectory search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)CrossRefGoogle Scholar
  2. 2.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood based mutation operator. IEEE Trans. on Evolutionary Computation 13(3), 526–553 (2009)CrossRefGoogle Scholar
  3. 3.
    Herrera, F., Lozano, M., Molina, D.: Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems, http://sci2s.ugr.es/eamhco/CFP.php
  4. 4.
    Huang, V.L., Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2006), pp. 17–24 (July 2006)Google Scholar
  5. 5.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)Google Scholar
  6. 6.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  7. 7.
    Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proc. of the IEEE Int. Conf. on Evolutionary Computation, New York, USA, pp. 798–803 (1996)Google Scholar
  8. 8.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans on Evolutionary Computation 13(2), 398–417 (2009)CrossRefGoogle Scholar
  9. 9.
    Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2005), Edinburgh, Scotland, pp. 1785–1791. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  10. 10.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Trans. on Evolutionary Computation 12(1), 64–79 (2008)CrossRefGoogle Scholar
  11. 11.
    Storn, R., Price, K.V.: Differential evolution-A simple and efficient heuristic for global optimization over continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tseng, L.Y., Chen, C.: Multiple trajectory search for multiobjective optimization. In: Proc. IEEE Congr. Evol. Comput (CEC 2007), pp. 3609–3616 (2007)Google Scholar
  13. 13.
    Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2008), pp. 3052–3059 (2008)Google Scholar
  14. 14.
    Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, & Nanyang Technological University, Singapore (November 2007)Google Scholar
  15. 15.
    Zhang, J.Q., Sanderson, A.C.: JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans on Evolutionary Computation 13(5), 945–958 (2009)CrossRefGoogle Scholar
  16. 16.
    Tang, K., Li, X.D., Suganthan, P.N., Yang, Z.Y., Weise, T.: Benchmark Functions for the CEC 2010 Special Session and Competition on Large-Scale Global Optimization (2010), http://nical.ustc.edu.cn/cec10ss.php, http://www3.ntu.edu.sg/home/EPNSugan/
  17. 17.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proc. IEEE Congr. Evol. Comput (CEC 2010), Hong Kong, pp. 3845–3852 (June 2008)Google Scholar
  18. 18.
    Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive Differential Evolution with Multi-trajectory Search for Large Scale Optimization. Soft Computing (accepted)Google Scholar
  19. 19.
    Korosec, P., Tashkova, K., Silc, J.: The Differential Ant-Stigmergy Algorithm for Large-Scale Global Optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 4288–4295 (2010)Google Scholar
  20. 20.
    Wang, H., Wu, Z., Rahnamayan, S., Jiang, D.: Sequential DE Enhanced by Neighborhood Search for Large Scale Global Optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 4056–4062 (2010)Google Scholar
  21. 21.
    Wang, Y., Li, B.: Two-stage based Ensemble Optimization for Large-Scale Global Optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 4488–4495 (2010)Google Scholar
  22. 22.
    Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: Memetic Algorithm Based on Local Search Chains for Large Scale Continuous Global Optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 3153–3160 (2010)Google Scholar
  23. 23.
    Brest, J., Zamuda, A., Fister, I., Maucec, M.S.: Large Scale Global Optimization using Self-adaptive Differential Evolution Algorithm. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 3097–3104 (2010)Google Scholar
  24. 24.
    Omidvar, M.N., Li, X., Yao, X.: Cooperative Co-evolution with Delta Grouping for Large Scale Non-separable Function Optimization. In: Proc. IEEE Congr. Evol. Comput. (CEC 2010), pp. 1762–1769 (2010)Google Scholar
  25. 25.
    Chen, S.: Locust Swarms for Large Scale Global Optimization of Nonseparable Problems. Kukkonen, Benchmarking the Classic Differential Evolution Algorithm on Large-Scale Global OptimizationGoogle Scholar
  26. 26.
    Yang, Z., Tang, K., Yao, X.: Large Scale Evolutionary Optimization Using Cooperative Coevolution. Information Sciences 178(15), 2985–2999 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shi-Zheng Zhao
    • 1
  • Ponnuthurai Nagaratnam Suganthan
    • 1
  • Swagatam Das
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore
  2. 2.Dept. of Electronics and Telecommunication EnggJadavpur UniversityKolkataIndia

Personalised recommendations