New Directions in Web Data Management 1 pp 171-212

Part of the Studies in Computational Intelligence book series (SCI, volume 331) | Cite as

Towards Adaptively Approximated Search in Distributed Architectures

  • Barbara Catania
  • Giovanna Guerrini

Abstract

Innovative applications over distributed architectures, like the Web, often require the analysis of strongly related, highly heterogeneous data, stored in remote and autonomous data sources, that can be either totally available at query processing time (stored data) or become available in a continuous stream (data stream). In these contexts, search efficiency is a key issue. However, classical processing techniques, according to which queries are executed exactly, both for what concerns the request and for what concerns the processing technique, which is set at the beginning of the execution, may not ensure adequate performance and quality (in terms of completeness and of accuracy) of the returned result. To overcome such problem, approximate and adaptive query processing techniques have been proposed. Adaptive techniques aim at ensuring an efficient query processing whenever a priori information, needed to statically select once at the beginning of the processing the most efficient processing technique, is not available. Approximation, by contrast, has been proposed for ensuring a higher result quality in presence of data heterogeneity and limited data knowledge. In highly dynamic and heterogeneous environments, these two approaches have usually been considered as orthogonal. However, we claim that applications exist that could benefit from a combined approach. An example are Web applications allowing to specify queries on heterogeneous data (streams), retrieved through mash-up from different sites. Since data are dynamically acquired, they cannot be statically reconciled, before processing queries. Moreover, adopting a single approximate search strategy, fixed a priori, could penalize the system efficiency and/or the quality of result, whenever heterogeneity only characterizes subsets of input data. The aim of this chapter is to make one step towards the integration of such approaches by introducing Approximate Search with Adaptive Processing (ASAP for short) systems. In ASAP, decisions concerning when, how, and how much to approximate are taken dynamically, with the goal of optimizing both the quality of result and the efficiency of processing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABB+02]
    Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing Memory Requirements for Queries over Continuous Data Streams. In: PODS, pp. 221–232 (2002)Google Scholar
  2. [AAB+05]
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The Design of the Borealis Stream Processing Engine. In: CIDR, pp. 277–289 (2005)Google Scholar
  3. [ABD+08]
    Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-Centric XML. In: ICDE, pp. 814–823 (2008)Google Scholar
  4. [ACDG03]
    Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)Google Scholar
  5. [ACS02]
    Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: EDBT 2002, pp. 496–513 (2002)Google Scholar
  6. [AGP00]
    Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate Answering of Group-by Queries. In: SIGMOD, pp. 487–498 (2000)Google Scholar
  7. [AGP+99]
    Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate Query Answering. In: SIGMOD, pp. 275–286 (1999)Google Scholar
  8. [AH00]
    Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: SIGMOD, pp. 261–272 (2000)Google Scholar
  9. [AKM+05]
    Amer-Yahia, S., Koudas, N., Marian, A., et al.: Structure and Content Scoring for XML. In: VLDB, pp. 361–372 (2005)Google Scholar
  10. [AMS96]
    Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the Frequency Moments. In: ACM Symp. on Theory of Computing, pp. 20–29 (1996)Google Scholar
  11. [ARSZ03]
    Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric Spaces and its Use for Approximate Similarity Search. ACM Trans.on Information Systems 21(2), 192–227 (2003)CrossRefGoogle Scholar
  12. [ASP+09]
    Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.: Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous Environments: Distributed and Parallel Databases, vol. 25(3), pp. 125–164 (2009)Google Scholar
  13. [AT05]
    Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  14. [BB05]
    Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR, pp. 238–249 (2005)Google Scholar
  15. [BBC+06]
    Belussi, A., et al.: Towards Similarity-Based Topological Query Languages. In: EDBT Workshops, pp. 675–686 (2006)Google Scholar
  16. [BBdW09]
    Bizarro, P., Bruno, N., DeWitt, D.J.: Progressive Parametric Query Optimization. IEEE Trans. Knowl. Data Eng. 21(4), 582–594 (2009)CrossRefGoogle Scholar
  17. [BCG02]
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k Selection Queries over Relational Databases: Mapping Strategies and Performance Evaluation. ACM Trans. Database Syst. 27(2), 153–187 (2002)CrossRefGoogle Scholar
  18. [BDM02]
    Babcock, B., Datar, M., Motwani, R.: Sampling from a Moving Window over Streaming Data. In: ACM-SIAM Symp. on Discrete Algorithms, pp. 633–634 (2002)Google Scholar
  19. [BFM+00]
    Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: Dynamic Query Scheduling in Data Integration Systems. In: ICDE, pp. 425–434 (2000)Google Scholar
  20. [BGL07a]
    Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting Matters – Controlling Skyline Sizes by Incremental Integration of User Preferences. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 551–562. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. [BGL07b]
    Balke, W.-T., Güntzer, U., Lofi, C.: User Interaction Support for Incremental Refinement of Preference-based Queries. In: RCIS, pp. 209–220 (2007)Google Scholar
  22. [BGRS99]
    Beyer, K.S., Golstein, J., Ramakrishnan, R., Shaft, U.: When is “ Nearest Neighbor” Meaningful? In: EDBT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999)Google Scholar
  23. [BKK+01]
    Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S., Stocker, K.: ObjectGlobe: Ubiquitous Query Processing on the Internet. VLDB Journal 10(1), 48–71 (2001)MATHGoogle Scholar
  24. [BKS01]
    Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  25. [BW01]
    Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Record 30(3), 109–120 (2001)CrossRefGoogle Scholar
  26. [BZG05]
    Balke, W.-T., Zheng, J.X., Güntzer, U.: Approaching the Efficient Frontier: Cooperative Database Retrieval Using High-Dimensional Skylines. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 410–421. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. [CCD+03]
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR (2003)Google Scholar
  28. [CEP09]
    Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query Recommendations for Interactive Database Exploration. In: SSDBM, pp. 3–18 (2009)Google Scholar
  29. [CET05a]
    Chan, C.Y., Eng, P.-K., Tan, K.-L.: Efficient Processing of Skyline Queries with Partially-Ordered Domains. In: ICDE, pp. 190–191 (2005)Google Scholar
  30. [CET05b]
    Chan, C.Y., Eng, P.-K., Tan, K.-L.: Stratified Computation of Skylines with Partially Ordered Domains. In: SIGMOD, pp. 203–214 (2005)Google Scholar
  31. [CH02]
    Chang, K.C.-C., Hwang, S.: Minimal Probing: Supporting Expensive Predicates for Top-k Queries. In: SIGMOD, pp. 346–357 (2002)Google Scholar
  32. [Cha90]
    Chaudhuri, S.: Generalization and a Framework for Query Modification. In: ICDE, pp. 138–145 (1990)Google Scholar
  33. [CGK06]
    Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins in Data Cleaning. In: ICDE (2006)Google Scholar
  34. [CGR+00]
    Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Processing using Wavelets. In: VLDB, pp. 111–122 (2000)Google Scholar
  35. [CJT+06a]
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High Dimensional Skylines. In: EDBT, pp. 478–495 (2006)Google Scholar
  36. [CJT+06b]
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-dominant Skyline in High Dimensional Space. In: SIGMOD, pp. 503–514 (2006)Google Scholar
  37. [CMN99]
    Chaudhuri, S., Motwani, R., Narasayya, V.: On Random Sampling over Joins. In: SIGMOD, pp. 263–274 (1999)Google Scholar
  38. [CS09]
    Cohen, S., Shiloach, M.: Flexible XML Querying Using Skyline Semantics. In: ICDE, pp. 553–564 (2009)Google Scholar
  39. [DAF03]
    Diao, Y., Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path Sharing and Predicate Evaluation for High-Performance XML Filtering. ACM Transaction on Database Systems 28(4), 467–516 (2003)CrossRefGoogle Scholar
  40. [DGI+02]
    Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining Stream Statistics over Sliding Windows. In: ACM-SIAM Symp. on Discrete Algorithms, pp. 635–644 (2002)Google Scholar
  41. [DGR03]
    Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams. In: SIGMOD, pp. 40–51 (2003)Google Scholar
  42. [DIR07]
    Deshpande, A., Ives, Z., Raman, V.: Adaptive Query Processing. Foundations and Trends in Databases 1(1), 1–140 (2007)MATHCrossRefGoogle Scholar
  43. [EFP06]
    Eurviriyanukul, K., Fernandes, A.A.A., Paton, N.W.: A Foundation for the Replacement of Pipelined Physical Join Operators in Adaptive Query Processing. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. [EIV07]
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.: Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  45. [FHK+03]
    Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T., Carey, M.J., Sundararajan, A., Agrawal, G.: The BEA/XQRL Streaming XQuery Processor. In: VLDB, pp. 997–100 (2003)Google Scholar
  46. [FM83]
    Flajolet, P., Martin, G.: Probabilistic Counting. In: IEEE Symp. on Foundations of Computer Science (1983)Google Scholar
  47. [GBJ+09]
    Galpin, I., Brenninkmeijer, C.Y.A., Jabeen, F., Fernandes, A.A.A., Paton, N.W.: Comprehensive Optimization of Declarative Sensor Network Queries. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 339–360. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. [GIJ+01]
    Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB, pp. 491–500 (2001)Google Scholar
  49. [GMB06]
    Guerrini, G., Mesiti, M., Bertino, E.: Structural Similarity Measures in Sources of XML Documents. In: Darmont, J., Boussaid, O. (eds.) Processing and Managing Complex Data for Decision Support, pp. 247–279. IDEA Group, USA (2006)Google Scholar
  50. [GJK+02]
    Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. In: SIGMOD, pp. 287–298 (2002)Google Scholar
  51. [GS03]
    Gupta, A.K., Suciu, D.: Stream Processing of XPath Queries with Predicates. In: SIGMOD, pp. 419–430 (2003)Google Scholar
  52. [GSBS03]
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search over XML Documents. In: SIGMOD, pp. 16–27 (2003)Google Scholar
  53. [HB08]
    Hwang, S., Balke, W.: Preference Query Formulation and Processing: Ranking and Skyline Query Approaches. In: DASFAA Tutorial (2008)Google Scholar
  54. [HJ05]
    Huang, X., Jensen, C.S.: In-Route Skyline Querying for Location-Based Services. In: Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp. 120–135. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  55. [HS99]
    Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)CrossRefGoogle Scholar
  56. [HZY05]
    Hsueh, Y.-L., Zimmermann, R., Yang, M.H.: Approximate Continuous k Nearest Neighbor Queries for Continuous Moving Objects with Pre-defined Paths. In: ER Workshops, pp. 270–279 (2005)Google Scholar
  57. [KBG09]
    Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: Expressing and Combining Flexible Recommendations. In: SIGMOD, pp. 745–758 (2009)Google Scholar
  58. [KC03]
    Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003)Google Scholar
  59. [KD98]
    Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-optimization of Suboptimal Query Execution Plans. In: SIGMOD, pp. 106–117 (1998)Google Scholar
  60. [KLTV06]
    Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection Queries. In: VLDB, pp. 199–210 (2006)Google Scholar
  61. [KRR02]
    Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: an Online Algorithm for Skyline Queries. In: VLDB, pp. 275–286 (2002)Google Scholar
  62. [KS03]
    Koudas, N., Srivastava, D.: Data Stream Query Processing: A Tutorial. In: VLDB Tutorial (2003)Google Scholar
  63. [KS05]
    Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In: VLDB Tutorial (2005)Google Scholar
  64. [KSS06]
    Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures and Algorithms. In: SIGMOD Tutorial (2006)Google Scholar
  65. [KSS+04]
    Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: FluXQuery: An Optimizing XQuery Processor for Streaming XML Data. In: VLDB, pp. 1309–1312 (2004)Google Scholar
  66. [KWFH04]
    Kadlag, A., Wanjari, A.V., Freire, J., Haritsa, J.R.: Supporting Exploratory Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  67. [IAE+06]
    Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive Rank-aware Query Optimization in Relational Database. ACM Transactions on Database Systems 31(4), 1257–1304 (2006)CrossRefGoogle Scholar
  68. [IBMS08]
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surveys 40(4) (2008)Google Scholar
  69. [IFF+99]
    Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive Query Execution System for Data Integration. In: SIGMOD, pp. 299–310 (1999)Google Scholar
  70. [IHW02]
    Ives, Z.G., Halevy, A.Y., Weld, D.S.: An XML Query Engine for Network-bound data. VLDB Journal 11(4), 380–402 (2002)MATHCrossRefGoogle Scholar
  71. [IHW04]
    Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data Integration Queries. In: SIGMOD, pp. 395–406 (2004)Google Scholar
  72. [IP99]
    Ioannidis, Y., Poosala, V.: Histogram-Based Approximation of Set-Valued Query-Answers. In: VLDB, pp. 174–185 (1999)Google Scholar
  73. [ISA+04]
    Ilyas, I.F., Shah, R., Aref, W.G., Vitter, J.S., Elmagarmid, A.K.: Rank-aware Query Optimization. In: SIGMOD, pp. 203–214 (2004)Google Scholar
  74. [Jhi06]
    Jhingran, A.: Enterprise Information Mash-ups: Integrating Information, Simply. In: VLDB, pp. 3–4 (2006)Google Scholar
  75. [Lee02]
    Lee, D.: Query Relaxation for XML Model. Phd Thesis, University of California (2002)Google Scholar
  76. [LCIS05]
    Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: Query Algebra and Optimization for Relational Top-k Queries. In: SIGMOD, pp. 131–142 (2005)Google Scholar
  77. [LLR07]
    Li, Y., Lokey, S.W., Ramakrishna, M.V.: Performance Study of Data Stream Approximation Algorithms in Wireless Sensor Networks. In: ICPADS, pp. 1–8 (2007)Google Scholar
  78. [LMF+09]
    Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-completeness Trade-offs in Record Linkage using Adaptive Query Processing. In: EDBT, pp. 851–861 (2009)Google Scholar
  79. [LMP02]
    Ludäscher, B., Mukhopadhyay, P., Papakonstantinou, Y.: A Transducer-Based XML Query Processor. In: VLDB, pp. 227–238 (2002)Google Scholar
  80. [Luo06]
    Luo, G.: Efficient Detection of Empty-Result Queries. In: VLDB, pp. 1015–1025 (2006)Google Scholar
  81. [LYH09]
    Lee, J., won You, G., won Hwang, S.: Personalized Top-k Skyline Queries in High-Dimensional Space. Inf. Syst. 34(1), 45–61 (2009)CrossRefGoogle Scholar
  82. [LYZZ07]
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Representative Skyline Operator. In: ICDE, pp. 86–95 (2007)Google Scholar
  83. [LWLG09]
    Li, L., Wang, H., Li, J., Gao, H.: Efficient Algorithms for Skyline Top-K Keyword Queries on XML Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 283–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  84. [MAK+05]
    Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)Google Scholar
  85. [MA08]
    Mokbel, M.F., Aref, W.G.: SOLE: Scalable Online Execution of Continuous Queries on Spatiotemporal Data Streams. VLDB Journal 17(5), 971–995 (2008)CrossRefGoogle Scholar
  86. [MAA06]
    Metwally, A., Agrawal, D., Abbadi, A.E.: An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)CrossRefGoogle Scholar
  87. [MBG04]
    Marian, A., Bruno, N., Gravano, L.: Evaluating top-k Queries over Web-Accessible Databases. ACM Trans. on Database Systems 29(2), 319–362 (2004)CrossRefGoogle Scholar
  88. [MBP06]
    Mouraditis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries over Sliding Windows. In: SIGMOD, pp. 635–646 (2006)Google Scholar
  89. [MC09]
    Mindolin, D., Chomicki, J.: Discovering Relative Importance of Skyline Attributes. PVLDB 2(1), 610–621 (2009)Google Scholar
  90. [MK09]
    Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)Google Scholar
  91. [MRS+04]
    Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query Processing through Progressive Optimization. In: SIGMOD, pp. 659–670 (2004)Google Scholar
  92. [MSH+02]
    Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous Queries over Streams. In: SIGMOD, pp. 49–60 (2002)Google Scholar
  93. [MTW05]
    Michel, S., Triantafillou, P., Weikum, G.: KLEE: A Framework for Distributed Top-k Algorithms. In: VLDB, pp. 637–648 (2005)Google Scholar
  94. [MWA+03]
    Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approximation in a Data Stream Management System. In: CIDR (2003)Google Scholar
  95. [MXA04]
    Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable Incremental Processing of Countinuous Queries in Spatio-Temporal Database. In: SIGMOD, pp. 623–634 (2004)Google Scholar
  96. [MXA+04]
    Mokbel, M.F., Xiong, X., Aref, W.G., Hambrusch, S.E., Prabhakar, S., Hammad, M.A.: PLACE: A Query Processor for Handling Real-time Spatio-temporal Data Streams. In: VLDB, pp. 1377–1380 (2004)Google Scholar
  97. [NCSLV01]
    Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting Incremental Join Queries on Ranked Inputs. In: VLDB, pp. 281–290 (2001)Google Scholar
  98. [NdWM+01]
    Naughton, J.F., DeWitt, D.J., Maier, D., Aboulnaga, A., Chen, J., Galanis, L., Kang, J., Krishnamurthy, R., Luo, Q., Prakash, N., Ramamurthy, R., Shanmugasundaram, J., Tian, F., Tufte, K., Viglas, S., Wang, Y., Zhang, C., Jackson, B., Gupta, A., Chen, R.: The Niagara Internet Query System. IEEE Data Eng. Bull. 24(2), 27–33 (2001)Google Scholar
  99. [NL99]
    Naumann, F., Lesser, U.: Quality–driven Integration of Heterogeneous Information Systems. In: VLDB, 447–458 (1999)Google Scholar
  100. [PA02]
    Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  101. [PAL+09]
    Paton, N.W., Aragão, M.A.T., Lee, K., Fernandes, A.A.A., Sakellariou, R.: Optimizing Utility in Cloud Computing through Autonomic Workload Execution. IEEE Data Eng. Bull. 32(1), 51–58 (2009)Google Scholar
  102. [PBC+09]
    Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin, D.M., Fernandes, A.A.A.: Autonomic Query Parallelization using non-Dedicated Computers: an Evaluation of Adaptivity Options. VLDB J 18(1), 119–140 (2009)CrossRefGoogle Scholar
  103. [PC03]
    Peng, F., Chawathe, S.S.: XPath Queries on Streaming Data. In: SIGMOD, pp. 431–442 (2003)Google Scholar
  104. [PG99]
    Poosala, V., Ganti, V.: Fast Approximate Answers to Aggregate Queries on a Data Cube. In: SSDBM, pp. 24–33 (1999)Google Scholar
  105. [PGI04]
    Polyzotis, N., Garofalakis, N., Yoannidis, Y.E.: Approximate XML Query Answers. In: SIGMOD, pp. 263–274 (2004)Google Scholar
  106. [Pod10]
    Podesta‘, P.: Query Processing and Analysis of Multi-resolution Spatial Data in Distributed Architectures. PhD Thesis, University of Genoa, Italy (2010)Google Scholar
  107. [PTMH05]
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  108. [QQZ06]
    Qin, S., Qian, W., Zhou, A.: Approximately Processing Multi-granularity Aggregate Queries over Data Streams. In: ICDE (2006)Google Scholar
  109. [RDS+04]
    Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE: Continuous Query Engine with Heterogeneous-Grained Adaptivity. In: VLDB, pp. 1353–1356 (2004)Google Scholar
  110. [RKV95]
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD, pp. 71–79 (1995)Google Scholar
  111. [SBM+07]
    Sanz, I., Berlanga, R., Mesiti, M., Guerrini, G.: ArHeX: Flexible Composition of Indexes and Similarity Measures for XML. In: ICDE Workshops, pp. 281–284 (2007)Google Scholar
  112. [SDP09]
    Stefanidis, K., Drosou, M., Pitoura, E.: “You Also Like” Results in Relational Databases. In: PersDB (2009)Google Scholar
  113. [SLM+01]
    Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Optimizer. In: VLDB, pp. 19–28 (2001)Google Scholar
  114. [SMG+08]
    Sanz, I., Mesiti, M., Guerrini, G., Berlanga, R.: Fragment-based Approximate Retrieval in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)CrossRefGoogle Scholar
  115. [SML03]
    Shin, H., Moon, B., Lee, S.: Adaptive and Incremental Processing for Distance Join Queries. IEEE Trans. Knowl. Data Eng. 15(6), 1561–1578 (2003)CrossRefGoogle Scholar
  116. [SSK09]
    Sharifzadeh, E., Shahabi, C., Kazemi, L.: Processing Spatial Skyline Queries in both Vector Spaces and Spatial Network Databases. ACM Trans. Database Syst. 34(3) (2009)Google Scholar
  117. [SSLAH09]
    Son, W., Lee, M.-W., Ahn, H.K., Hwang, S.-W.: Spatial Skyline Queries: An Efficient Geometric Algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  118. [TBM+08]
    Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and Versatile Top- k Query Processing for Semistructured Data. VLDB J 17(1), 81–115 (2008)Google Scholar
  119. [TDLP09]
    Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based Representative Skyline. In: ICDE, pp. 892–903 (2009)Google Scholar
  120. [TdW03]
    Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: VLDB, pp. 333–344 (2003)Google Scholar
  121. [TEO01]
    Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB, pp. 301–310 (2001)Google Scholar
  122. [TP06]
    Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. TKDE 18(3), 377–391 (2006)Google Scholar
  123. [UF01]
    Urhan, T., Franklin, M.J.: Dynamic Pipeline Scheduling for Improving Interactive Query Performance. In: VLDB, pp. 501–510 (2001)Google Scholar
  124. [UFA98]
    Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays. In: SIGMOD, pp. 130–141 (1998)Google Scholar
  125. [USU06]
    Ünal, A., Saygin, Y., Ulusoy, Ö.: Processing Count Queries over Event Streams at Multiple Time Granularities. Inf. Sci. 176(14), 2066–2096 (2006)CrossRefGoogle Scholar
  126. [XZK+05]
    Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most Influential Spatial Sites. In: VLDB, pp. 946–957 (2005)Google Scholar
  127. [XZT08]
    Xia, T., Zhang, D., Tao, Y.: On Skylining with Flexible Dominance Relation. In: ICDE, pp. 1397–1399 (2008)Google Scholar
  128. [YLL+05]
    Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient Computation of the Skyline Cube. In: VLDB, pp. 241–252 (2005)Google Scholar
  129. [YM09]
    Yiu, M.L., Mamoulis, N.: Multi-dimensional Top Dominating Queries. VLDB J. 18(3), 695–718 (2009)CrossRefGoogle Scholar
  130. [YDM+07]
    Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k Spatial Preference Queries. In: ICDE, pp. 1076–1085 (2007)Google Scholar
  131. [YHC05]
    Yu, H., Hwang, S., Chang, K.: RankFP: A Framework for Supporting Rank Formulation and Processing. In: ICDE, pp. 514–515 (2005)Google Scholar
  132. [Yu05]
    Yu, B.: Adaptive Query Processing in Point-Transformation Schemes. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 197–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  133. [WN05]
    Weis, M., Naumann, F.: DogmatiX Tracks down Duplicates in XML. In: SIGMOD, pp. 431–442 (2005)Google Scholar
  134. [WLR+09]
    Wei, M., et al.: XML Stream Query Processing: Current Technologies and Open Challenges. Open and Novel Issues in XML Database Applications: Future Directions and Advanced Technologies. IGI Publishing (2009)Google Scholar
  135. [WTZ09]
    Wu, J., Tan, K.L., Zhou, Y.: QoS-Oriented Multi-query Scheduling over Data Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 215–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  136. [ZPZ+05]
    Zhu, M., Papadias, D., Zhang, J., Lun Lee, D.: Top-k Spatial Joins. IEEE Trans. on Knowl. and Data Eng. 17(4), 567–579 (2005)CrossRefGoogle Scholar
  137. [ZGBN07]
    Zhou, X., Gaugaz, J., Balke, W.-T., Nejdl, W.: Query Relaxation using Malleable Schemas. In: SIGMOD, pp. 545–556 (2007)Google Scholar
  138. [ZHC+06]
    Zhang, Z., Hwang, S., Chang, K., et al.: Boolean + Ranking: Querying a Database by k-Constrained Optimization. In: SIGMOD, pp. 359–370 (2006)Google Scholar
  139. [ZLC09]
    Zhu, L., Li, C., Chen, H.: Efficient Computation of Reverse Skyline on Data Stream. In: CSO, pp. 735–739 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Barbara Catania
    • 1
  • Giovanna Guerrini
    • 1
  1. 1.Dipartimento di Informatica e Scienze dell’InformazioneUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations