Stationary Subspace Analysis as a Generalized Eigenvalue Problem

  • Satoshi Hara
  • Yoshinobu Kawahara
  • Takashi Washio
  • Paul von Bünau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6443)

Abstract

Understanding non-stationary effects is one of the key challenges in data analysis. However, in many settings the observation is a mixture of stationary and non-stationary sources. The aim of Stationary Subspace Analysis (SSA) is to factorize multivariate data into its stationary and non-stationary components. In this paper, we propose a novel SSA algorithm (ASSA) that extracts stationary sources from multiple time series blocks. It has a globally optimal solution under certain assumptions that can be obtained by solving a generalized eigenvalue problem. Apart from the numerical advantages, we also show that compared to the existing method, fewer blocks are required in ASSA to guarantee the identifiability of the solution. We demonstrate the validity of our approach in simulations and in an application to domain adaptation.

Keywords

Non-stationarity Dimensionality Reduction Feature Extraction Eigenvalue Problem Stationary Subspace Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, k.R.: Towards Adaptive Classification for BCI. Journal of Neural Engineering, 3, 13–23 (2006)CrossRefGoogle Scholar
  2. 2.
    Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2), 251–276 (1987)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cohen, L., Ayrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Information Fusion 9(3), 344–353 (2008)CrossRefGoogle Scholar
  4. 4.
    von Bünau, P., Meinecke, F., Meinecke, F.C., Kiráry, F.C., Müller, K.R.: Finding Stationary Subspaces in Multivariate Time Series. Phys. Rev. Lett. 103(21), 21401 (2009)Google Scholar
  5. 5.
    Meinecke, F.C., von Bünau, P., Kawanabe, M., Müller, K.R.: Learning invariances with Stationary Subspace Analysis. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 87–92 (2009)Google Scholar
  6. 6.
    Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  7. 7.
    von Bünau, P., Meinecke, F.C., Kiráry, F.C., Müller, K.R.: Finding Stationary Subspaces in Multivariate Time Series, Supplemental Materials. EPAPPS Document, no.E-PRLTA-103-014948 (EPAPS, http://www.aip.org/pubservs/epaps.html
  8. 8.
    Chatelin, F.: Eigenvalues of matrices. John Wiley and Sons, Chichester (1993)MATHGoogle Scholar
  9. 9.
    Daumé III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research 26(1), 101–126 (2006)MATHMathSciNetGoogle Scholar
  10. 10.
    Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 90(2), 227–244 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Satoshi Hara
    • 1
  • Yoshinobu Kawahara
    • 1
  • Takashi Washio
    • 1
  • Paul von Bünau
    • 2
  1. 1.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityJapan
  2. 2.Machine Learning Group, Computer Science DepartmentTU BerlinGermany

Personalised recommendations