Identification of Liquid State of Scrap in Electric Arc Furnace by the Use of Computational Intelligence Methods

  • Marcin Blachnik
  • Tadeusz Wieczorek
  • Krystian Mączka
  • Grzegorz Kopeć
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6444)


A constant aspiration to optimize electric arc steelmaking process causes an increase of the use of advanced analytical methods for the process support. Optimization of the production processes lead to real benefits, which are, for example, lower costs of production. More often computational intelligence methods are used for this purpose. In this paper authors present three methods used for identification of liquid state of scrap in electric arc furnace using analysis of signals of the current of furnace electrodes.


industrial application process modeling electric arc furnace signal processing noise estimation classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wieczorek, T.: Intelligent control of the electric-arc steelmaking process using artificial neural networks. Computer Methods in Material Science 6(1), 9–14 (2006)MathSciNetGoogle Scholar
  2. 2.
    Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Archives of Metallurgy and Materials 53(2), 613–618 (2008)Google Scholar
  3. 3.
    Millman, M.S., Nyssen, P., Mathy, C., Tolazzi, D., Londero, L., Candusso, C., Baumert, J.C., Brimmeyer, M., Gualtieri, D., Rigoni, D.: Direct observation of the melting process in an EAF with a closed slag door. Archives of Metallurgy and Materials 53(2), 463–468 (2008)Google Scholar
  4. 4.
    Kendall, M., Thys, M., Horrex, A., Verhoeven, J.P.: A window into the electric arc furnace, a continuous temperature sensor measuring the complete furnace cycle. Archives of Metallurgy and Materials 53(2), 451–454 (2008)Google Scholar
  5. 5.
    Wieczorek, T., Blachnik, M., Mączka, K.: Building model for time reduction of steel scrap meltdown in the electric arc furnace. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Wieczorek, T., Mączka, K.: Modeling of the AC-EAF process using computational intelligence methods. Electrotechnical Review 11, 184–188 (2008)Google Scholar
  7. 7.
    Blachnik, M., Mązka, K., Wieczorek, T.: A model for temperature prediction of melted steel in the electric arc furnace (EAF). LNCS, vol. 4839, pp. 371–378. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Jones, A.J.: New tools in non-linear modelling and prediction. Computational Man-agement Science 1, 109–149 (2004)zbMATHGoogle Scholar
  9. 9.
    Liitiäinen, E., Corona, F., Lendasse, A.: Nearest Neighbor Distributions and Noise Variance Estimation. In: ESANN, Belgium (2007)Google Scholar
  10. 10.
    Schölkopf, B., Burges, C., Smola, A.: Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  11. 11.
    Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufman, San Francisco (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcin Blachnik
    • 1
  • Tadeusz Wieczorek
    • 1
  • Krystian Mączka
    • 1
  • Grzegorz Kopeć
    • 1
  1. 1.Silesian University of TechnologyKatowicePoland

Personalised recommendations