VG-RAM WNN Approach to Monocular Depth Perception

  • Hélio Perroni Filho
  • Alberto F. De Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6444)

Abstract

We have examined Virtual Generalizing Random Access Memory Weightless Neural Networks (VG-RAM WNN) as platform for depth map inference from static monocular images. For that, we have designed, implemented and compared the performance of VG-RAM WNN systems against that of depth estimation systems based on Markov Random Field (MRF) models. While not surpassing the performance of such systems, our results are consistent to theirs, and allow us to infer important features of the human visual cortex.

Keywords

Monocular depth perception weightless neural networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  2. 2.
    Loomis, J.M.: Looking down is looking up. Nature 414, 155–156 (2001)CrossRefGoogle Scholar
  3. 3.
    Saxena, A., Chung, S.H., Ng, A.Y.: 3-D Depth Reconstruction from a Single Still Image. International Journal of Computer Vision 76(1), 53–69 (2008)CrossRefGoogle Scholar
  4. 4.
    Aleksander, I., De Gregorio, M., França, F.M.G., Lima, P.M.V., Morton, H.: A Brief Introduction to Weightless Neural Systems. In: 17th European Symposium on Artificial Neural Networks, pp. 299–305. d-side publications, Evere (2009)Google Scholar
  5. 5.
    Rohwer, R., Morciniec, M.: A Theoretical and Experimental Account of n-Tuple Classifier Performance. Neural Computation 8(3), 629–642 (1996)CrossRefGoogle Scholar
  6. 6.
    De Souza, A.F., Badue, C., Pedroni, F., Dias, S.S., De Souza, H.O., De Souza, S.F.: Face Recognition with VG-RAM Weightless Neural Networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 951–960. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Krylov, A.S., Kutovoi, A., Leow, W.K.: Texture parameterization with Hermite functions. In: 5th International Conference on Computer Graphics & Vision, University of Nizhny Novgorod, Russia (2002)Google Scholar
  8. 8.
    Krantz, J.H.: Texture Gradient, http://psych.hanover.edu/krantz/art/texture.html
  9. 9.
    Carneiro, R.V., Dias, S.S., Fardim Júnior, D., Oliveira, H., Garcez, A.A., De Souza, A.F.: Improving VG-RAM Neural Networks Performance Using Knowledge Correlation. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4232, pp. 427–436. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mitchell, R.J., Bishop, J.M., Box, S.K., Hawker, J.F.: Comparison of Some Methods for Processing Grey Level Data in Weightless Networks. In: Austin, J. (ed.) RAM-Based Neural Networks, pp. 61–70. World Scientific, Singapore (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hélio Perroni Filho
    • 1
  • Alberto F. De Souza
    • 1
  1. 1.Laboratório de Computação de Alto DesempenhoUniversidade Federal do Espírito SantoVitória-ESBrazil

Personalised recommendations