Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time

  • David Eppstein
  • Maarten Löffler
  • Darren Strash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)

Abstract

The degeneracy of an n-vertex graph G is the smallest number d such that every subgraph of G contains a vertex of degree at most d. We show that there exists a nearly-optimal fixed-parameter tractable algorithm for enumerating all maximal cliques, parametrized by degeneracy. To achieve this result, we modify the classic Bron–Kerbosch algorithm and show that it runs in time O(dn3d/3). We also provide matching upper and lower bounds showing that the largest possible number of maximal cliques in an n-vertex graph with degeneracy d (when d is a multiple of 3 and n ≥ d + 3) is (n − d)3d/3. Therefore, our algorithm matches the Θ(d(n − d)3d/3) worst-case output size of the problem whenever n − d = Ω(n).

Keywords

sparse graphs d-degenerate graphs maximal clique listing algorithms Bron–Kerbosch algorithm fixed-parameter tractability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkoyunlu, E.A.: The enumeration of maximal cliques of large graphs. SIAM J. Comput. 2(1), 1–6 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17(4), 571–588 (1970)CrossRefMATHGoogle Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Batagelj, V., Zaveršnik, M.: An O(m) algorithm for cores decomposition of networks (2003)Google Scholar
  6. 6.
    Berry, N.M., Ko, T.H., Moy, T., Smrcka, J., Turnley, J., Wu, B.: Emergent clique formation in terrorist recruitment. In: Dignum, V., Corkill, D., Jonker, C., Dignum, F. (eds.) Proc. AAAI 2004 Worksh. Agent Organizations. AAAI Press, Menlo Park (2004), http://www.aaai.org/Papers/Workshops/2004/WS-04-02/WS04-02-005.pdf Google Scholar
  7. 7.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)CrossRefMATHGoogle Scholar
  8. 8.
    Cai, L., Chan, S., Chan, S.: Random separation: A new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1-3), 564–568 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1-2), 109–131 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  14. 14.
    Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: Proc. 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 16–25 (2007)Google Scholar
  15. 15.
    Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms & Applications 7(2), 131–140 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Eppstein, D.: All maximal independent sets and dynamic dominance for sparse graphs. ACM Trans. Algorithms 5(4), A38 (2009)Google Scholar
  17. 17.
    Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. In: WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Mathematica Hungarica 17(1-2), 61–99 (1966)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Frank, O.: Statistical analysis of change in networks. Statistica Neerlandica 45(3), 283–293 (1991)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gardiner, E.J., Willett, P., Artymiuk, P.J.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. Sci. 40(2), 273–279 (2000)CrossRefGoogle Scholar
  23. 23.
    Gerhards, L., Lindenberg, W.: Clique detection for nondirected graphs: Two new algorithms. Computing 21(4), 295–322 (1979)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Goel, G., Gustedt, J.: Bounded arboricity to determine the local structure of sparse graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 159–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 195–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229(3), 707–721 (1993)CrossRefGoogle Scholar
  27. 27.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)MATHGoogle Scholar
  28. 28.
    Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix. Sociometry 20(3), 205–215 (1957)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11), 1168–1180 (1989)CrossRefGoogle Scholar
  30. 30.
    Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley Interscience, New York (1995)MATHGoogle Scholar
  31. 31.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal in- dependent sets. Inf. Proc. Lett. 27(3), 119–123 (1988)CrossRefMATHGoogle Scholar
  32. 32.
    Johnston, H.C.: Cliques of a graph—variations on the Bron–Kerbosch algorithm. Int. J. Parallel Programming 5(3), 209–238 (1976)MathSciNetMATHGoogle Scholar
  33. 33.
    Kirousis, L., Thilikos, D.: The linkage of a graph. SIAM J. Comput. 25(3), 626–647 (1996)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kloks, T., Cai, L.: Parameterized tractability of some (efficient) Y-domination variants for planar graphs and t-degenerate graphs. In: Proc. International Computer Symposium (2000), http://hdl.handle.net/2377/2482
  35. 35.
    Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput. Sci. 250(1-2), 1–30 (2001)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common subtopologies in a set of protein structures. J. Comput. Biol. 3(2), 289–306 (1996)CrossRefGoogle Scholar
  37. 37.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9(3), 558–565 (1980)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Lick, D.R., White, A.T.: k-degenerate graphs. Canad. J. Math. 22, 1082–1096 (1970), http://www.smc.math.ca/cjm/v22/p1082 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Loukakis, E., Tsouros, C.: A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically. Computing 27(4), 349–366 (1981)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  42. 42.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Mulligan, G.D., Corneil, D.G.: Corrections to Bierstone’s algorithm for generating cliques. J. ACM 19(2), 244–247 (1972)CrossRefMATHGoogle Scholar
  44. 44.
    Robins, G., Morris, M.: Advances in exponential random graph (p*) models. Social Networks 29(2), 169–172 (2007)CrossRefGoogle Scholar
  45. 45.
    Samudrala, R., Moult, J.: A graph-theoretic algorithm for comparative modeling of protein structure. J. Mol. Biol. 279(1), 287–302 (1998)CrossRefGoogle Scholar
  46. 46.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61(3), 401–425 (1996)Google Scholar
  49. 49.
    Wood, D.R.: On the maximum number of cliques in a graph. Graphs and Combinatorics 23(3), 337–352 (2007)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, pp. 283–286. AAAI Press, Menlo Park (1997), http://www.aaai.org/Papers/KDD/1997/KDD97-060.pdf Google Scholar
  51. 51.
    Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In: Proc. 26th ACM Symp. Computational Geometry, pp. 257–266 (2010), http://www.cs.dartmouth.edu/~afra/papers/socg10/tidy-socg.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Eppstein
    • 1
  • Maarten Löffler
    • 1
  • Darren Strash
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations