Advertisement

Combining Two Worlds: Parameterised Approximation for Vertex Cover

  • Ljiljana Brankovic
  • Henning Fernau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)

Abstract

We explore opportunities for parameterising constant factor approximation algorithms for vertex cover. We provide a simple algorithm that works on any approximation ratio of the form \(\frac {2l+1}{l+1}\) and has complexity that outperforms an algorithm by Bourgeois et al. derived from a sophisticated exact parameterised algorithm. In particular, for l = 1 (factor 1.5 approximation) our algorithm runs in time \(\mathcal{O}^{*}(1.09^{k})\). Additionally, we present an improved polynomial-time approximation algorithm for graphs of average degree four.

Keywords

Approximation Algorithm Search Tree Average Degree Vertex Cover Approximation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Yehuda, R.: One for the price of two: a unified approach for approximating covering problems. Algorithmica 27, 131–144 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berman, P., Fujito, T.: On approximation properties of the independent set problem for degree 3 graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Bourgeois, N., Escoffier, B., Paschos, V.T.: Efficient approximation of combinatorial problems by moderately exponential algorithms. In: Dehne, F. (ed.) WADS 2009. LNCS, vol. 5664, pp. 507–518. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and Approximability Results. Algorithmica 57(2), 398–412 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Computer and System Sciences 67, 789–807 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Sunil Chandran, L., Grandoni, F.: Refined memorization for vertex cover. Information Processing Letters 93, 125–131 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41, 280–301 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved upper bounds for NP-hard problems. Algorithmica 43, 245–273 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dantsin, E., Gavrilovich, M., Hirsch, E.A., Konev, B.: MAX SAT approximation beyond the limits of polynomial-time approximation. Ann. Pure Appl. Logic 113(1-3), 81–94 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of Mathematics 162, 439–485 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Halldórsson, M., Radhakrishnan, J.: Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs. Algorithmica 18(1), 145–163 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kanj, I.: Vertex Cover: Exact and Approximation Algorithms and Applications. Phd Thesis, Texas A& M University (2001)Google Scholar
  17. 17.
    Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Computer and System Sciences 74, 335–349 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51(1), 60–78 (2008)CrossRefGoogle Scholar
  20. 20.
    Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Xiao, M.: A note on vertex cover in graphs with maximum degree 3. In: Thai, T. (ed.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ljiljana Brankovic
    • 1
  • Henning Fernau
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceThe University of NewcastleCallaghanAustralia
  2. 2.Fachbereich 4, Abteilung InformatikUniversität TrierTrierGermany

Personalised recommendations