Advertisement

On Tractable Cases of Target Set Selection

  • André Nichterlein
  • Rolf Niedermeier
  • Johannes Uhlmann
  • Mathias Weller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6506)

Abstract

We study the NP-complete Target Set Selection (TSS) problem occurring in social network analysis. Complementing results on its approximability and extending results for its restriction to trees and bounded treewidth graphs, we classify the influence of the parameters “diameter”, “cluster edge deletion number”, “vertex cover number”, and “feedback edge set number” of the underlying graph on the problem’s complexity, revealing both tractable and intractable cases. For instance, even for diameter-two split graphs TSS remains very hard. TSS can be efficiently solved on graphs with small feedback edge set number and also turns out to be fixed-parameter tractable when parameterized by the vertex cover number, both results contrasting known parameterized intractability results for the parameter treewidth. While these tractability results are relevant for sparse networks, we also show efficient fixed-parameter algorithms for the parameter cluster edge deletion number, yielding tractability for certain dense networks.

Keywords

Vertex Cover Input Graph Reduction Rule Split Graph Problem Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: An exact almost optimal algorithm for target set selection in social networks. In: Proc. 10th ACM EC, pp. 355–362. ACM Press, New York (2009)Google Scholar
  2. 2.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: Transformations give evidence for non-existence of polynomial kernels. Technical Report UU-CS-2008-030, Department of Information and Computing Sciences, Utrecht University (2008)Google Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, N.: On the approximability of influence in social networks. SIAM Journal on Discrete Mathematics 23(3), 1400–1415 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. 7th ACM KDD, pp. 57–66. ACM Press, New York (2001)Google Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. In: TAMC 2009. LNCS, vol. 5532, pp. 221–230. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  12. 12.
    Franks, D.W., Noble, J., Kaufmann, P., Stagl, S.: Extremism propagation in social networks with hubs. Adaptive Behavior 16(4), 264–274 (2008)CrossRefGoogle Scholar
  13. 13.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  14. 14.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proc. 9th ACM KDD, pp. 137–146. ACM Press, New York (2003)Google Scholar
  15. 15.
    McCartin, C., Rossmanith, P., Fellows, M.: Frontiers of intractability for dominating set (2007) (manuscript)Google Scholar
  16. 16.
    McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proc. 5th SODA, pp. 536–545. ACM/SIAM (1994)Google Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  19. 19.
    Potterat, J.J., Phillips-Plummer, L., Muth, S.Q., Rothenberg, R.B., Woodhouse, D.E., Maldonado-Long, T.S., Zimmerman, H.P., Muth, J.B.: Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs. Sexually Transmitted Infections 78, 159–163 (2002)CrossRefGoogle Scholar
  20. 20.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • André Nichterlein
    • 1
  • Rolf Niedermeier
    • 1
  • Johannes Uhlmann
    • 1
  • Mathias Weller
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations